scholarly journals Aurora kinase A controls meiosis I progression in mouse oocytes

Cell Cycle ◽  
2008 ◽  
Vol 7 (15) ◽  
pp. 2368-2376 ◽  
Author(s):  
Adela Saskova ◽  
Petr Solc ◽  
Vladimir Baran ◽  
Michal Kubelka ◽  
Richard M. Schultz ◽  
...  
2012 ◽  
Vol 87 (4) ◽  
Author(s):  
Petr Solc ◽  
Vladimir Baran ◽  
Alexandra Mayer ◽  
Tereza Bohmova ◽  
Gabriela Panenkova-Havlova ◽  
...  

Reproduction ◽  
2020 ◽  
Vol 159 (3) ◽  
pp. 261-274
Author(s):  
Xiaotian Wang ◽  
Claudia Baumann ◽  
Rabindranath De La Fuente ◽  
Maria M Viveiros

Acentriolar microtubule-organizing centers (aMTOCs) play a critical role in stable meiotic spindle assembly in oocytes, necessary for accurate chromosome segregation. Yet, there is a limited understanding of the essential regulatory components of these unique MTOCs. In somatic cells, CEP215 (Centrosomal Protein 215) serves as an important regulator of centrosome maturation and spindle organization. Here, we assessed whether it has a similar function in mouse oocytes. CEP215 was detected in oocyte lysates and specifically localized to aMTOCs throughout the progression of meiosis in a pericentrin-dependent manner. Super-resolution microscopy revealed CEP215 co-localization with pericentrin and a unique pore/ring-like structural organization of aMTOCs. Interestingly, inhibition of Aurora Kinase A in either MI or MII-stage oocytes resulted in a striking loss of the ring-like aMTOC organization and pronounced CEP215 clustering at spindle poles, as well as shorter spindles with highly focused poles. In vitro siRNA-mediated transcript knockdown effectively reduced CEP215 in approximately 85% of the oocytes. Maturation rates to MII were similar in the Cep215 siRNA and injected controls; however, a high percentage (~40%) of the Cep215-knockdown oocytes showed notable variations in spindle pole focusing. Surprisingly, pericentrin and γ-tubulin localization and fluorescence intensity at aMTOCs were unaltered in knockdown oocytes, contrasting with mitotic cells where CEP215 depletion reduced γ-tubulin at centrosomes. Our results demonstrate that CEP215 is a functional component of oocyte aMTOCs and participates in the regulation of meiotic spindle pole focusing. Moreover, these studies reveal a vital role for Aurora Kinase A activity in the maintenance of aMTOC organization in oocytes.


2021 ◽  
Author(s):  
Cecilia S. Blengini ◽  
Patricia Ibrahimian ◽  
Michaela Vaskovicova ◽  
David Drutovic ◽  
Petr Solc ◽  
...  

The Aurora protein kinases are well-established regulators of spindle building and chromosome segregation in mitotic and meiotic cells. In mouse oocytes, there is significant Aurora kinase A (AURKA) compensatory abilities when the other Aurora kinase homologs are deleted. Whether the other homologs, AURKB or AURKC can compensate for loss of AURKA is not known. Using a conditional mouse oocyte knockout model, we demonstrate that this compensation is not reciprocal because female oocyte-specific knockout mice are sterile and their oocytes fail to complete meiosis I. In determining the AURKA-specific functions, we demonstrate that its first meiotic requirement is to activate Polo-like kinase 1 at microtubule organizing centers (MTOCs; meiotic spindle poles). This activation induces fragmentation of the MTOCs, a step essential for building a bipolar spindle. The next step that requires AURKA is building the liquid-like spindle domain that involves TACC3. Finally, we find that AURKA is also required for anaphase I onset to trigger cohesin cleavage in an APC/C independent manner. We conclude that AURKA has multiple functions essential to completing MI that are distinct from AURKB and AURKC.


Cell Cycle ◽  
2016 ◽  
Vol 15 (23) ◽  
pp. 3296-3305 ◽  
Author(s):  
Su-Yeon Lee ◽  
Eun-Young Kim ◽  
Kyeoung-Hwa Kim ◽  
Kyung-Ah Lee

PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009327
Author(s):  
Cecilia S. Blengini ◽  
Patricia Ibrahimian ◽  
Michaela Vaskovicova ◽  
David Drutovic ◽  
Petr Solc ◽  
...  

The Aurora protein kinases are well-established regulators of spindle building and chromosome segregation in mitotic and meiotic cells. In mouse oocytes, there is significant Aurora kinase A (AURKA) compensatory abilities when the other Aurora kinase homologs are deleted. Whether the other homologs, AURKB or AURKC can compensate for loss of AURKA is not known. Using a conditional mouse oocyte knockout model, we demonstrate that this compensation is not reciprocal because female oocyte-specific knockout mice are sterile, and their oocytes fail to complete meiosis I. In determining AURKA-specific functions, we demonstrate that its first meiotic requirement is to activate Polo-like kinase 1 at acentriolar microtubule organizing centers (aMTOCs; meiotic spindle poles). This activation induces fragmentation of the aMTOCs, a step essential for building a bipolar spindle. We also show that AURKA is required for regulating localization of TACC3, another protein required for spindle building. We conclude that AURKA has multiple functions essential to completing MI that are distinct from AURKB and AURKC.


2015 ◽  
Vol 53 (08) ◽  
Author(s):  
J Bornschein ◽  
J Nielitz ◽  
I Drozdov ◽  
M Selgrad ◽  
T Wex ◽  
...  

2017 ◽  
Vol 9 (372) ◽  
pp. eaai8269 ◽  
Author(s):  
Brian C. Betts ◽  
Anandharaman Veerapathran ◽  
Joseph Pidala ◽  
Hua Yang ◽  
Pedro Horna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document