aurora kinase a
Recently Published Documents


TOTAL DOCUMENTS

404
(FIVE YEARS 99)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Vol 23 (2) ◽  
pp. 763
Author(s):  
Sandrine Baltzer ◽  
Timur Bulatov ◽  
Christopher Schmied ◽  
Andreas Krämer ◽  
Benedict-Tilman Berger ◽  
...  

The cAMP-dependent aquaporin-2 (AQP2) redistribution from intracellular vesicles into the plasma membrane of renal collecting duct principal cells induces water reabsorption and fine-tunes body water homeostasis. However, the mechanisms controlling the localization of AQP2 are not understood in detail. Using immortalized mouse medullary collecting duct (MCD4) and primary rat inner medullary collecting duct (IMCD) cells as model systems, we here discovered a key regulatory role of Aurora kinase A (AURKA) in the control of AQP2. The AURKA-selective inhibitor Aurora-A inhibitor I and novel derivatives as well as a structurally different inhibitor, Alisertib, prevented the cAMP-induced redistribution of AQP2. Aurora-A inhibitor I led to a depolymerization of actin stress fibers, which serve as tracks for the translocation of AQP2-bearing vesicles to the plasma membrane. The phosphorylation of cofilin-1 (CFL1) inactivates the actin-depolymerizing function of CFL1. Aurora-A inhibitor I decreased the CFL1 phosphorylation, accounting for the removal of the actin stress fibers and the inhibition of the redistribution of AQP2. Surprisingly, Alisertib caused an increase in actin stress fibers and did not affect CFL1 phosphorylation, indicating that AURKA exerts its control over AQP2 through different mechanisms. An involvement of AURKA and CFL1 in the control of the localization of AQP2 was hitherto unknown.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhenying Guo ◽  
Li Shen ◽  
Ningning Li ◽  
Xiaoxiao Wu ◽  
Canming Wang ◽  
...  

BackgroundMalignant mesothelioma (MM) is a highly aggressive cancer with a poor prognosis. Despite the use of several well-known markers, the diagnosis of MM is still challenging in some cases. we applied bioinformatics to identify key genes and screen for diagnostic and prognostic markers of MM.MethodsThe expression profiles of GSE2549 and GSE112154 microarray datasets from the Gene Expression Omnibus database contained 87 cases of MM tissue and 8 cases of normal mesothelial tissue in total. The GEO2R tool was used to detect differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were performed using DAVID Bioinformatics Resources. The DEGs protein-protein interaction networks were constructed from the STRING database. Cytoscape was used to identify significant modules and hub genes. The GEPIA database was used to explore relationships between hub genes and prognosis of MM. Immunohistochemistry was used to analyze protein expression in tissue microarrays with 47 Chinese MM tissues. Statistical analyses diagnostic and prognostic values.Results346 DEGs were identified: 111 genes upregulated, and 235 downregulated. GO analysis showed that the primary biological processes of these DEGs were cell adhesion, leukocyte migration, and angiogenesis. The main cellular components included the extracellular space, extracellular exosome, and extracellular region. The molecular functions were integrin binding, heparin binding, and calcium ion binding. KEGG pathway analysis showed that DEGs are primarily involved in PPAR signaling pathway, extracellular matrix–receptor interactions, and regulation of lipolysis in adipocytes. Survival analysis showed that seven genes—AURKA, GAPDH, TOP2A, PPARG, SCD, FABP4, and CEBPA—may be potential prognostic markers for MM. Immunohistochemical studies showed that Aurora kinase A (AURKA gene encode, Aurora-A) and GAPDH were highly expressed in MM tissue in comparison with normal mesothelial tissue. Kaplan-Meier analysis confirmed a correlation between Aurora-A protein expression and overall survival but did not confirm a correlation with GAPDH. The receiver operating characteristic curves of Aurora-A protein expression suggested acceptable accuracy (AUC = 0.827; 95% CI [0.6686 to 0.9535]; p = 0.04). The sensitivity and specificity of Aurora-A were 83.33% and 77.78%, respectively.ConclusionAurora-A could be an optimal diagnostic biomarker and a potential prognostic marker for MM.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi165-vi165
Author(s):  
Shwetal Mehta ◽  
Artak Tovmasyan ◽  
An-Chi Tien ◽  
Michael Holter ◽  
Barbara Hopkins ◽  
...  

Abstract Cell-cycle deregulation is at the crux of all malignancies, including glioblastoma (GBM). Aurora Kinase A (AURKA) plays a central role in G2/M transition and faithful chromosome segregation. In this study, we evaluated the pharmacokinetics, pharmacodynamics, and radiation sensitization properties of LY3295668, a highly specific AURKA inhibitor, in orthotopic patient-derived xenograft (PDX) models of GBM. Mice with intracranial tumors were randomized to 50 mg/kg LY3295668 PO BID x 4 days vs. placebo. LY3295668 levels in plasma and contrast-enhancing tumor tissue were measured by liquid chromatography tandem mass spectrometry (LC-MS/MS). Unbound fractions were determined by equilibrium dialysis. Immunohistochemistry was performed to assess levels of pAURKA (T288), phospho-Histone H3 (pHH3), and cleaved caspase 3 (CC3). For survival studies, mice with intracranial tumors were randomized to four cohorts – vehicle, radiotherapy, LY3295668 monotherapy, and LY3295668 plus radiotherapy. The median unbound concentration of LY3295668 was 270.88 nmol/L and 22.33 nmol/kg in plasma and tumor tissue, respectively – significantly higher than the biochemical IC50 of LY3295668 for AURKA inhibition (0.8 nM). A decrease in pHH3(+) cells (0.8% vs. 6.4%, p=0.036) indicated drug-induced mitotic arrest and was accompanied by an increase in CC3(+) cells (6.4% vs. 8.0%, p=0.67). Combination of LY3295668 with radiotherapy prolonged survival compared to either therapy alone in orthotopic GBM PDX models. LY3295668 is well tolerated, achieves pharmacologically-relevant unbound concentrations in GBM PDX models, and is associated with significant target modulation. Preclinical combination of LY3295668 with radiation therapy leads to synergistic effects and supports future clinical study of this multimodal strategy in glioblastoma patients.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Peng-Chao Wang ◽  
Si-Ting Chen ◽  
Zeng-Ming Yang

Abstract Background Decidualization is essential to the successful pregnancy in mice. The molecular mechanisms and effects of Aurora kinase A (Aurora A) remain poorly understood during pregnancy. This study is the first to investigate the expression and role of Aurora A during mouse decidualization. Methods Quantitative real time polymerase chain reaction, western blotting and in situ hybridization were used to determine the expression of Aurora A in mouse uteri. Aurora A activity was inhibited by Aurora A inhibitor to explore the role of Aurora A on decidualization via regulating the Aurora A/Stat3/Plk1/Cdk1 signaling pathway. Results Aurora A was strongly expressed at implantation sites compared with inter-implantation sites. Furthermore, Aurora A was also significantly increased in oil-induced deciduoma compared with control. Both Aurora A mRNA and protein were significantly increased under in vitro decidualization. Under in vitro decidualization, Prl8a2, a marker of mouse decidualization, was significantly decreased by TC-S 7010, an Aurora A inhibitor. Additionally, Prl8a2 was reduced by Stat3 inhibitor, Plk1 inhibitor and Cdk1 inhibitor, respectively. Moreover, the protein levels of p-Stat3, p-Plk1 and p-Cdk1 were suppressed by TC-S 7010. The protein levels of p-Stat3, p-Plk1 and p-Cdk1 were also suppressed by S3I-201, a Stat3 inhibitor). SBE 13 HCl (Plk1 inhibitor) could reduce the protein levels of p-Plk1 and p-Cdk1. Collectively, Aurora A could regulate Stat3/Plk1/Cdk1 signaling pathway. Conclusion Our study shows that Aurora A is expressed in decidual cells and should be important for mouse decidualization. Aurora A/Stat3/Plk1/Cdk1 signaling pathway may be involved in mouse decidualization.


2021 ◽  
Author(s):  
Shahan Mamoor

In these brief notes we document work using published microarray data (1, 2) to pioneer integrative transcriptome analysis comparing vulvar carcinoma to its tissue of origin, the vulva. We report the differential expression of bora, aurora kinase A activator, encoded by BORA, in cancer of the vulva. BORA may be of pertinence to understanding transformation and disease progression in vulvar cancer (3).


Development ◽  
2021 ◽  
Author(s):  
Mansour Aboelenain ◽  
Karen Schindler

Mammalian oocytes are transcriptionally quiescent, and meiosis and early embryonic divisions rely on translation of stored maternal mRNAs. Activation of these mRNAs is mediated by polyadenylation. Cytoplasmic polyadenylation binding element 1 (CPEB1) regulates activates mRNA polyadenylation. One message is Aurora kinase C (Aurkc), encoding a protein that regulates chromosome segregation. We previously demonstrated that AURKC levels are upregulated in oocytes lacking Aurora kinase B (AURKB), and this upregulation caused increased aneuploidy rates, a role we investigate here. Using genetic and pharmacologic approaches, we found that AURKB negatively regulates CPEB1-dependent translation of many messages. To determine why translation is increased, we evaluated Aurora kinase A (AURKA), a kinase that activates CPEB1 in other organisms. We find that AURKA activity is increased in Aurkb knockout oocytes and demonstrate that this increase drives the excess translation. Importantly, removal of one copy of Aurka from the Aurkb knockout strain background, reduces aneuploidy rates. This study demonstrates that AURKA is required for CPEB1-dependent translation, and it describes a new AURKB requirement to maintain translation levels through AURKA, a function critical to generating euploid eggs.


2021 ◽  
Vol 16 (10) ◽  
pp. S1163-S1164
Author(s):  
T. Mitchell ◽  
T. Jones ◽  
S. Danson ◽  
M. Glover ◽  
J. Bury ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document