On Chen–Yang’s volume conjecture for various quantum invariants

2021 ◽  
pp. 147-160
Author(s):  
Jun Murakami
2006 ◽  
Vol 15 (04) ◽  
pp. 479-548 ◽  
Author(s):  
JØRGEN ELLEGAARD ANDERSEN ◽  
SØREN KOLD HANSEN

We investigate the Reshetikhin–Turaev invariants associated to SU(2) for the 3-manifolds M obtained by doing any rational surgery along the figure 8 knot. In particular, we express these invariants in terms of certain complex double contour integrals. These integral formulae allow us to propose a formula for the leading asymptotics of the invariants in the limit of large quantum level. We analyze this expression using the saddle point method. We construct a certain surjection from the set of stationary points for the relevant phase functions onto the space of conjugacy classes of nonabelian SL(2, ℂ)-representations of the fundamental group of M and prove that the values of these phase functions at the relevant stationary points equals the classical Chern–Simons invariants of the corresponding flat SU(2)-connections. Our findings are in agreement with the asymptotic expansion conjecture. Moreover, we calculate the leading asymptotics of the colored Jones polynomial of the figure 8 knot following Kashaev [14]. This leads to a slightly finer asymptotic description of the invariant than predicted by the volume conjecture [24].


Author(s):  
Heather M Russell ◽  
Julianna Tymoczko

Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $\mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $\mathfrak{sl}_3$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $\mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $\mathfrak{sl}_3$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $\mathfrak{sl}_3$.


2008 ◽  
Vol 17 (08) ◽  
pp. 925-937
Author(s):  
TOSHIFUMI TANAKA

We give formulas for the N-colored Jones polynomials of doubles of knots by using skein theory. As a corollary, we show that if the volume conjecture for untwisted positive (or negative) doubles of knots is true, then the colored Jones polynomial detects the unknot.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. Ramesh Chandra ◽  
Jan de Boer ◽  
Mario Flory ◽  
Michal P. Heller ◽  
Sergio Hörtner ◽  
...  

Abstract We propose that finite cutoff regions of holographic spacetimes represent quantum circuits that map between boundary states at different times and Wilsonian cutoffs, and that the complexity of those quantum circuits is given by the gravitational action. The optimal circuit minimizes the gravitational action. This is a generalization of both the “complexity equals volume” conjecture to unoptimized circuits, and path integral optimization to finite cutoffs. Using tools from holographic $$ T\overline{T} $$ T T ¯ , we find that surfaces of constant scalar curvature play a special role in optimizing quantum circuits. We also find an interesting connection of our proposal to kinematic space, and discuss possible circuit representations and gate counting interpretations of the gravitational action.


2012 ◽  
Vol 21 (03) ◽  
pp. 1250022 ◽  
Author(s):  
ABDELMALEK ABDESSELAM

We prove an upper bound for the evaluation of all classical SU2 spin networks conjectured by Garoufalidis and van der Veen. This implies one half of the analogue of the volume conjecture which they proposed for classical spin networks. We are also able to obtain the other half, namely, an exact determination of the spectral radius, for the special class of generalized drum graphs. Our proof uses a version of Feynman diagram calculus which we developed as a tool for the interpretation of the symbolic method of classical invariant theory, in a manner which is rigorous yet true to the spirit of the classical literature.


2011 ◽  
Vol 11 (4) ◽  
pp. 2191-2205 ◽  
Author(s):  
Nathan M Dunfield ◽  
Helen Wong
Keyword(s):  

2020 ◽  
Vol 68 (7) ◽  
pp. 2000036 ◽  
Author(s):  
Hao Geng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document