Fourier multipliers and transfer operators

2021 ◽  
Author(s):  
Mark Pollicott
2017 ◽  
Vol 60 (2) ◽  
pp. 411-421
Author(s):  
Luchezar Stoyanov

AbstractWe prove a comprehensive version of the Ruelle–Perron–Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is that the Hölder constant of the function generating the operator appears only polynomially, not exponentially as in previously known estimates.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Carlos Lizama ◽  
Marina Murillo-Arcila

Abstract We consider the maximal regularity problem for a PDE of linear acoustics, named the Van Wijngaarden–Eringen equation, that models the propagation of linear acoustic waves in isothermal bubbly liquids, wherein the bubbles are of uniform radius. If the dimensionless bubble radius is greater than one, we prove that the inhomogeneous version of the Van Wijngaarden–Eringen equation, in a cylindrical domain, admits maximal regularity in Lebesgue spaces. Our methods are based on the theory of operator-valued Fourier multipliers.


2020 ◽  
Vol 32 (4) ◽  
pp. 919-936 ◽  
Author(s):  
Jiao Chen ◽  
Wei Ding ◽  
Guozhen Lu

AbstractAfter the celebrated work of L. Hörmander on the one-parameter pseudo-differential operators, the applications of pseudo-differential operators have played an important role in partial differential equations, geometric analysis, harmonic analysis, theory of several complex variables and other branches of modern analysis. For instance, they are used to construct parametrices and establish the regularity of solutions to PDEs such as the {\overline{\partial}} problem. The study of Fourier multipliers, pseudo-differential operators and Fourier integral operators has stimulated further such applications. It is well known that the one-parameter pseudo-differential operators are {L^{p}({\mathbb{R}^{n}})} bounded for {1<p<\infty}, but only bounded on local Hardy spaces {h^{p}({\mathbb{R}^{n}})} introduced by Goldberg in [D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 1979, 1, 27–42] for {0<p\leq 1}. Though much work has been done on the {L^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} boundedness for {1<p<\infty} and Hardy {H^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} boundedness for {0<p\leq 1} for multi-parameter Fourier multipliers and singular integral operators, not much has been done yet for the boundedness of multi-parameter pseudo-differential operators in the range of {0<p\leq 1}. The main purpose of this paper is to establish the boundedness of multi-parameter pseudo-differential operators on multi-parameter local Hardy spaces {h^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} for {0<p\leq 1} recently introduced by Ding, Lu and Zhu in [W. Ding, G. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear Anal. 184 2019, 352–380].


2018 ◽  
Vol 334 ◽  
pp. 313-336 ◽  
Author(s):  
P. Hennig ◽  
M. Ambati ◽  
L. De Lorenzis ◽  
M. Kästner

2012 ◽  
Vol 22 (11) ◽  
pp. 1250261 ◽  
Author(s):  
ERIK M. BOLLT

Synchronization of chaotic oscillators has become well characterized by errors which shrink relative to a synchronization manifold. This manifold is the identity function in the case of identical systems, or some other slow manifold in the case of generalized synchronizaton in the case of nonidentical components. On the other hand, since many decades beginning with the Smale horseshoe, chaotic oscillators can be well understood in terms of symbolic dynamics as information producing processes. We study here the synchronization of a pair of chaotic oscillators as a process for sharing information bearing bits transferred between each other, by measuring the transfer entropy tracked as the global system transitions to the synchronization state. Further, we present for the first time the notion of transfer entropy in the measure theoretic setting of transfer operators.


2019 ◽  
Vol 276 (6) ◽  
pp. 1875-1892 ◽  
Author(s):  
David Beltran ◽  
João Pedro Ramos ◽  
Olli Saari

2012 ◽  
Vol 37 ◽  
pp. 251-263 ◽  
Author(s):  
Rodrigo Bañuelos ◽  
Adam Osekowski

Sign in / Sign up

Export Citation Format

Share Document