scholarly journals Electrical Surface Resistivity of Polyaniline Coated Woven Fabrics

2015 ◽  
Vol 749 ◽  
pp. 265-269 ◽  
Author(s):  
Jia Horng Lin ◽  
Ting An Lin ◽  
Chien Teng Hsieh ◽  
Jan Yi Lin ◽  
Ching Wen Lou

This study uses 0.08mm copper wire and nickel-coated copper wire as the core and 75 D far infrared filament as the wrapped material to manufacture Cu/FIR-PET wrapped yarn, Ni-Cu/FIR-PET wrapped yarn and Ni-Cu/Cu/FIR-PET wrapped yarn. The three optimum metallic/FIR-PET wrapped yarns are then weaving into Cu/FIR-PET woven fabrics, Ni-Cu/FIR-PET woven fabrics and Ni-Cu/Cu/FIR-PET woven fabrics. Tensile property of metallic/FIR-PET wrapped yarns, electrical resistance of metallic/FIR-PET wrapped yarns, surface resistivity of metallic/FIR-PET woven fabrics and electromagnetic shielding effectiveness of metallic/FIR-PET woven fabric are discussed. According to the results, the optimum tenacity and elongation are chosen as 7 turns/ cm, electrical resistance of Ni-Cu/Cu/FIR-PET wrapped presents the best value, Cu/FIR-PET woven fabric has the lowest surface resistivity and Ni-Cu/Cu/FIR-PET woven fabric shows the best EMSE at 37.61 dB when the laminating-layer number is double layer and laminating at 90 ̊. In this study, three kinds of metallic/FIR-PET woven fabrics are successfully manufactured and looking forward to applying on industrial domains.


2021 ◽  
pp. 152808372199718
Author(s):  
Ching-Wen Lou ◽  
Yan-Ling Liu ◽  
Bing-Chiuan Shiu ◽  
Hao-Kai Peng ◽  
Jia-Horng Lin

For the pursuit of conductive textiles with high electromagnetic shielding performance, specified yarns are processed with a special spinning feeding device with twist counts of 40 T, 50 T, 60 T, 70 T, 80 T, and 90 T, for Next, the optimal yarns from each group are made into SS/Pc-70 and Cu/Pc-80 conductive woven fabrics with a plain weave structure design. In addition, the surface resistivity, electromagnetic shielding effectiveness measurement and air permeability of the two conductive woven fabrics were tested and analyzed. Regarding the electromagnetic shielding performance test, the effects of the complete shielding network, the lamination layers of fabric, and lamination angle on the electromagnetic shielding performance are discussed. The test results indicate that Cu/Pc-80 woven fabrics has the lowest surface resistivity, which means it has the best electrical conductivity; Moreover, different types of metal wires provide the conductive fabrics with different levels of surface resistance. The variations in the lamination angles help attain a complete conductive network that significantly enhances the EMSE, and Cu/Pc-80 have a greater average shielding value comparatively and thus greater EMSE. For both types of conductive woven fabrics, one-layered conductive woven fabrics exhibit the maximal air permeability. As the air permeability of conductive woven fabrics is correlated with the thickness of fabrics, the greater the number of lamination layers, the lower the air permeability of the conductive fabrics.


1982 ◽  
Author(s):  
D.B. Hoover ◽  
C.L. Tippens ◽  
J.E. Cooke

Sign in / Sign up

Export Citation Format

Share Document