scholarly journals Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode

2018 ◽  
Vol 55 (3) ◽  
pp. 244-260 ◽  
Author(s):  
Hung Tai Nguyen ◽  
Thi Lan Tran ◽  
Dang Thanh Nguyen ◽  
Eui-Chol Shin ◽  
Soon-Hyung Kang ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenhua Li ◽  
Lan Luo ◽  
Min Li ◽  
Wangsong Chen ◽  
Yuguang Liu ◽  
...  

AbstractPhotoelectrochemical cells are emerging as powerful tools for organic synthesis. However, they have rarely been explored for C–H halogenation to produce organic halides of industrial and medicinal importance. Here we report a photoelectrocatalytic strategy for C–H halogenation using an oxygen-vacancy-rich TiO2 photoanode with NaX (X=Cl−, Br−, I−). Under illumination, the photogenerated holes in TiO2 oxidize the halide ions to corresponding radicals or X2, which then react with the substrates to yield organic halides. The PEC C–H halogenation strategy exhibits broad substrate scope, including arenes, heteroarenes, nonpolar cycloalkanes, and aliphatic hydrocarbons. Experimental and theoretical data reveal that the oxygen vacancy on TiO2 facilitates the photo-induced carriers separation efficiency and more importantly, promotes halide ions adsorption with intermediary strength and hence increases the activity. Moreover, we designed a self-powered PEC system and directly utilised seawater as both the electrolyte and chloride ions source, attaining chlorocyclohexane productivity of 412 µmol h−1 coupled with H2 productivity of 9.2 mL h−1, thus achieving a promising way to use solar for upcycling halogen in ocean resource into valuable organic halides.


2020 ◽  
Vol 38 (4A) ◽  
pp. 491-500
Author(s):  
Abeer F. Al-Attar ◽  
Saad B. H. Farid ◽  
Fadhil A. Hashim

In this work, Yttria (Y2O3) was successfully doped into tetragonal 3mol% yttria stabilized Zirconia (3YSZ) by high energy-mechanical milling to synthesize 8mol% yttria stabilized Zirconia (8YSZ) used as an electrolyte for high temperature solid oxide fuel cells (HT-SOFC). This work aims to evaluate the densification and ionic conductivity of the sintered electrolytes at 1650°C. The bulk density was measured according to ASTM C373-17. The powder morphology and the microstructure of the sintered electrolytes were analyzed via Field Emission Scanning Electron Microscopy (FESEM). The chemical analysis was obtained with Energy-dispersive X-ray spectroscopy (EDS). Also, X-ray diffraction (XRD) was used to obtain structural information of the starting materials and the sintered electrolytes. The ionic conductivity was obtained through electrochemical impedance spectroscopy (EIS) in the air as a function of temperatures at a frequency range of 100(mHz)-100(kHz). It is found that the 3YSZ has a higher density than the 8YSZ. The impedance analysis showed that the ionic conductivity of the prepared 8YSZ at 800°C is0.906 (S.cm) and it was 0.214(S.cm) of the 3YSZ. Besides, 8YSZ has a lower activation energy 0.774(eV) than that of the 3YSZ 0.901(eV). Thus, the prepared 8YSZ can be nominated as an electrolyte for the HT-SOFC.


2019 ◽  
Vol 30 (23) ◽  
pp. 20673-20686
Author(s):  
Ku Noor Dhaniah Ku Muhsen ◽  
Rozana Aina Maulat Osman ◽  
Mohd Sobri Idris

2014 ◽  
Vol 15 (4) ◽  
pp. 374-384 ◽  
Author(s):  
Julian Ihssen ◽  
Artur Braun ◽  
Greta Faccio ◽  
Krisztina Gajda-Schrantz ◽  
Linda Thöny-Meyer

Sign in / Sign up

Export Citation Format

Share Document