Simulation of Cavitating Nonlinear Acoustic Fluid and Flexible Structure Interaction

Author(s):  
F. Kalateh
Author(s):  
Farhoud Kalateh ◽  
Ali Koosheh

AbstractThis paper describes a numerical model and its finite element implementation that used to compute the cavitation effects on nonlinear acoustic fluid and adjacent flexible structure interaction. The system is composed of two sub-systems, namely, the fluid and the flexible flat plate. A fully coupled approach using iterative implicit partitioned scheme was implemented in the present work which can account for the effects associated whit a mutual interaction. This approach included a compressible nonlinear acoustic fluid Eulerian solver and a Lagrangian solver for the flexible structure both in finite element formulation. A novel implementation of acoustic cavitation was made possible with the introduction of a simplified one-fluid cavitation model. The element-by-element PCG (Preconditioned Conjugate Gradient) solver together with diagonal preconditioning is used to solve the large equation system resulting from the finite element discretization of the governing equation of fluid domain. The capability of three different cavitation model, as the cut-off model, Modified Schmidt model and developed model are compared with each other in the evaluation of plate vibration response. Simulation results are presented on a large size shock tube, in which planar shock waves were impacting in “face on” configuration flat plates mounted at tube's end. Results are presented to demonstrate the capability of proposed solver in simulating cavitating nonlinear acoustic fluid. Obtained results show that impact forces caused impinging shock wave and reloading by cavitating region collapse have a considerable effect on the dynamic response of flexible plate.


2018 ◽  
Author(s):  
H. R. Díaz-Ojeda ◽  
L. M. González ◽  
F. J. Huera-Huarte

The aim of this paper is to evaluate how much affects the presence of gravity and free-surface to a flexible structure in a classical fluid structure interaction (FSI) problem typically found in off-shore problems and other oceanic applications. The base problem selected is the Turek benchmark case where a deformable plate is attached to the wake of a circular cylinder. To focus on the differences of considering free surface, a simple geometry has been selected and two different situations have been studied: the first one is the classical Turek benchmark, the second is a similar geometry but adding gravity and free surface. The free surface problem was studied placing the structure at different depths and monitoring the deformation and forces on the structure.


1998 ◽  
Vol 120 (04) ◽  
pp. 66-68 ◽  
Author(s):  
Klaus-Ju¨rgen Bathe

This article reviews finite element methods that are widely used in the analysis of solids and structures, and they provide great benefits in product design. In fact, with today’s highly competitive design and manufacturing markets, it is nearly impossible to ignore the advances that have been made in the computer analysis of structures without losing an edge in innovation and productivity. Various commercial finite-element programs are widely used and have proven to be indispensable in designing safer, more economical products. Applications of acoustic-fluid/structure interactions are found whenever the fluid can be modeled to be inviscid and to undergo only relatively small particle motions. The interplay between finite-element modeling and analysis with the recognition and understanding of new physical phenomena will advance the understanding of physical processes. This will lead to increasingly better simulations. Based on current technology and realistic expectations of further hardware and software developments, a tremendous future for fluid–structure interaction applications lies ahead.


Sign in / Sign up

Export Citation Format

Share Document