Structural Damage Quantification Based on Image Correlation and PSO

Author(s):  
Y. Nomura ◽  
T. Kusaka ◽  
H. Furuta
Author(s):  
Wen-Yu He ◽  
Wei-Xin Ren ◽  
Lei Cao ◽  
Quan Wang

The deflection of the beam estimated from modal flexibility matrix (MFM) indirectly is used in structural damage detection due to the fact that deflection is less sensitive to experimental noise than the element in MFM. However, the requirement for mass-normalized mode shapes (MMSs) with a high spatial resolution and the difficulty in damage quantification restricts the practicability of MFM-based deflection damage detection. A damage detection method using the deflections estimated from MFM is proposed for beam structures. The MMSs of beams are identified by using a parked vehicle. The MFM is then formulated to estimate the positive-bending-inspection-load (PBIL) caused deflection. The change of deflection curvature (CDC) is defined as a damage index to localize damage. The relationship between the damage severity and the deflection curvatures is further investigated and a damage quantification approach is proposed accordingly. Numerical and experimental examples indicated that the presented approach can detect damages with adequate accuracy at the cost of limited number of sensors. No finite element model (FEM) is required during the whole detection process.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7069
Author(s):  
Xingyu Fan ◽  
Jun Li

This paper proposes a novel structural damage quantification approach using a sparse regularization based electromechanical impedance (EMI) technique. Minor structural damage in plate structures by using the measurement of only a single surface bonded lead zirconate titanate piezoelectric (PZT) transducer was quantified. To overcome the limitations of using model-based EMI based methods in damage detection of complex or relatively large-scale structures, a three-dimensional finite element model for simulating the PZT–structure interaction is developed and calibrated with experimental results. Based on the sensitivities of the resonance frequency shifts of the impedance responses with respect to the physical parameters of plate structures, sparse regularization was applied to conduct the undetermined inverse identification of structural damage. The difference between the measured and analytically obtained impedance responses was calculated and used for identification. In this study, only a limited number of the resonance frequency shifts were obtained from the selected frequency range for damage identification of plate structures with numerous elements. The results demonstrate a better performance than those from the conventional Tikhonov regularization based methods in conducting inverse identification for damage quantification. Experimental studies on an aluminum plate were conducted to investigate the effectiveness and accuracy of the proposed approach. To test the robustness of the proposed approach, the identification results of a plate structure under varying temperature conditions are also presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Ming-Hsiang Shih ◽  
Wen-Pei Sung

The capacity of buildings to resist external excitation is an important factor to consider for the structural design of buildings. When subject to external excitation, a building may suffer a certain degree of damages, and its residual capacity to resist external excitation cannot be evaluated. In this research, dynamic digital image correlation method combined with parameter evaluation available in system identification is used to evaluate the structural capacity to resist external excitation. The results reveal possible building latent safety problems so that timely structural reinforcement or dismantling of the building can be initiated to alleviate further damages. The results of experiments using the proposed method conform to the results obtained using the conventional method, but this method is more convenient and rapid than the latter in the subsequent procedure of data processing. If only the frequency change is used, the damages suffered by the building can be detected, but the damage location is not revealed. The interstory drift mode shape (IDMS) based on the characteristic of story drift has higher sensitivity than the approximate story damage index (ADSI) method based on modal frequency and vibration type; however, both indices can be used to determine the degree and location of building damages.


2020 ◽  
Vol 19 (6) ◽  
pp. 1790-1807 ◽  
Author(s):  
Liang Si ◽  
Zongfeng Li

The development of aerospace manufacturing has promoted the application of lightweight composite materials into aerospace structures. Although the aerospace composite structures possess numerous advantages, invisible internal structural damage such as delaminations induced by various external factors can significantly reduce the mechanical affordability, safety, and life-cycle of the structure. Therefore, it is of great significance to monitor and assess the health state and predict accurately the lifetime of aerospace composite structures. An acousto-ultrasonics-based multi-damage index identification approach is thus proposed in this study to identify and quantify possible multiple damage in thin-walled aerospace composite structures. In this approach, two indices for damage quantification were proposed: the energy and phase divergence indices. The energy index defines the reflected energy resulting from damage, and the phase divergence index defines the instantaneous phase variation of propagating waves due to damage. The two damage indices are obtained through the developed mode decomposition and spectral element analysis using sensor response signals collected by a transducer array placed onto the examined structure. Through a series of relevant experimental tests on the fabricated laminated composite panels with/without damage, the proposed acousto-ultrasonics-based multi-damage index identification approach was validated. The developed damage indices are competent to evaluate a structural health state in terms of damage quantification, and all of the validation results fell well in the prospected ranges. Moreover, it shows a linear and consistent trend between the variation of two damage indices and damage extents. Based on the particular relation, the linear regressive prediction functions were established separately regarding the two damage indices. They can be used to assess a structural health state due to the damage growth in real time. The proposed multi-damage index identification approach demonstrates its potential to serve as an online assessment tool to be aware of the reliability condition of a composite structure.


Sign in / Sign up

Export Citation Format

Share Document