scholarly journals Damage Identification in Plate Structures Using Sparse Regularization Based Electromechanical Impedance Technique

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7069
Author(s):  
Xingyu Fan ◽  
Jun Li

This paper proposes a novel structural damage quantification approach using a sparse regularization based electromechanical impedance (EMI) technique. Minor structural damage in plate structures by using the measurement of only a single surface bonded lead zirconate titanate piezoelectric (PZT) transducer was quantified. To overcome the limitations of using model-based EMI based methods in damage detection of complex or relatively large-scale structures, a three-dimensional finite element model for simulating the PZT–structure interaction is developed and calibrated with experimental results. Based on the sensitivities of the resonance frequency shifts of the impedance responses with respect to the physical parameters of plate structures, sparse regularization was applied to conduct the undetermined inverse identification of structural damage. The difference between the measured and analytically obtained impedance responses was calculated and used for identification. In this study, only a limited number of the resonance frequency shifts were obtained from the selected frequency range for damage identification of plate structures with numerous elements. The results demonstrate a better performance than those from the conventional Tikhonov regularization based methods in conducting inverse identification for damage quantification. Experimental studies on an aluminum plate were conducted to investigate the effectiveness and accuracy of the proposed approach. To test the robustness of the proposed approach, the identification results of a plate structure under varying temperature conditions are also presented.

Aerospace ◽  
2006 ◽  
Author(s):  
L. J. Jiang ◽  
J. Tang ◽  
K. W. Wang

A new concept of using piezoelectric transducer circuitry with tunable inductance to enhance the performance of frequency-shift-based damage identification method has been recently proposed. While previous work has shown that the frequency-shift information used for damage identification can be significantly enriched by tuning the inductance in the piezoelectric circuitry, a fundamental issue of this approach, namely, how to tune the inductance to best enhance the damage identification performance, has not been addressed. Therefore, this research aims at advancing the state-of-the-art of such a technology by proposing guidelines to form favorable inductance tuning such that the enriched frequency measurement data can effectively capture the damage effect. Our analysis shows that when the inductance is tuned to accomplish eigenvalue curve veering, the change of system eigenvalues induced by structural damage will vary significantly with respect to the change of inductance. Under such curve veering, one may obtain a series of frequency-shift data with different sensitivity relations to the damage, and thus the damage characteristics can be captured more effectively and completely. When multiple tunable piezoelectric transducer circuitries are integrated with the mechanical structure, multiple eigenvalue curve veering can be simultaneously accomplished between desired pairs of system eigenvalues. An optimization scheme aiming at achieving desired set of eigenvalue curve veering is formulated to find the critical inductance values that can be used to form the favorable inductance tuning for multiple piezoelectric circuitries. In the numerical analyses of damage identification, an iterative second-order perturbation-based algorithm is used to identify damages in beam and plate structures. Numerical results show that the performance of damage identification is significantly affected by the selection of inductance tuning, and only when the favorable inductance tuning is used, the locations and severities of structural damages can be accurately identified.


Author(s):  
Jinki Kim ◽  
R. L. Harne ◽  
K. W. Wang

The accurate and reliable identification of damage in modern engineered structures is essential for timely corrective measures. Vibration-based damage prediction has been studied extensively by virtue of its global damage detection ability and simplicity in practical implementation. However, due to noise and damping effects, the accuracy of this method is inhibited when direct peak detection (DPD) is utilized to determine resonant frequency shifts. This research investigates an alternative method to detect frequency shifts caused by structural damage based on the utilization of strongly nonlinear bifurcation phenomena in bistable electrical circuits coupled with piezoelectric transducers integrated with the structure. It is shown that frequency shift predictions by the proposed approach are significantly less susceptible to error than DPD when realistic noise and damping levels distort the shifting resonance peaks. As implemented alongside adaptive piezoelectric circuitry with tunable inductance, the new method yields damage location and severity identification that is significantly more robust and accurate than results obtained following the DPD approach.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yabin Liang ◽  
Yixuan Chen ◽  
Zuocai Zhang ◽  
Qian Feng

Electromechanical impedance (Electromechanical impedance)-based methods as potential nondestructive evaluation (NDT) techniques have been widely used in the field of structural health monitoring (SHM), especially for the civil, mechanical, and aerospace engineering fields. However, it is still difficult to apply in practical applications due to the limitations of the impedance measurement hardware, which is usually expensive, bulky, and heavy. In this paper, a small, lightweight, and low power consumption EMI-based structural health monitoring system combined with the low-cost miniature impedance board AD5933 was studied experimentally to investigate its quantifiable performance in impedance measurement and structural damage identification. At first, a simple impedance test with a free PZT patch was introduced to present the impedance calibration and measurement procedure of AD5933, and then its calibration performance was validated by comparing the signature with the one measured by a professional impedance analyzer (WK6500B). In order to further validate the feasibility and effectiveness of the AD5933 board in practical applications, a threaded pipe connection specimen was assembled in the laboratory and then connected with the AD5933 to acquire its impedance signatures under different loosening severities. The final results demonstrated that the impedance measured by the AD5933 show a good consistency with the measurements by the WK6500B, and the evaluation board could be successfully utilized for the loosening severities identification and quantitatively evaluation.


2014 ◽  
Vol 578-579 ◽  
pp. 1073-1078
Author(s):  
Qing Yang Liu ◽  
Yao Gong ◽  
Zhen Xu

This paper has been prototyped fine 1:20 scale model of the finite element numerical simulation analysis of each parameter sensitivity test conditions, based on similar principles of dynamics, through the production of about 1/20 the proportion of prototype scale model of the bridge, dynamic characteristics of research conducted scale model of finite element analysis, and study whether there are cracks in the presence of dynamic response mode model, summarized the structure of the bridge structure in a given period reflect the physical characteristics of the local sound voiceprint and bridges under the geometric structure of the physical parameters of a period of time to maintain the basic stability conditions, the "voiceprint" has a high probability of stability.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Jinki Kim ◽  
R. L. Harne ◽  
K. W. Wang

The accurate and reliable identification of damage in modern engineered structures is essential for timely corrective measures. Vibration-based damage prediction has been studied extensively by virtue of its global damage detection ability and simplicity in practical implementation. However, due to noise and damping influences, the accuracy of this method is inhibited when direct peak detection (DPD) is utilized to determine resonant frequency shifts. This research investigates an alternative method to detect frequency shifts caused by structural damage based on the utilization of strongly nonlinear bifurcation phenomena in bistable electrical circuits coupled with piezoelectric transducers integrated with the structure. It is shown that frequency shift predictions by the proposed approach are significantly less susceptible to error than DPD when realistic noise and damping levels distort the shifting resonance peaks. As implemented alongside adaptive piezoelectric circuitry with tunable inductance, the new method yields damage location and severity identification that is significantly more robust and accurate than results obtained following the DPD approach.


Sign in / Sign up

Export Citation Format

Share Document