Identification for Critical Flutter Load of a Non-uniform L-shaped Cracked Shaft subjected to a Follower Force (Out-of-Plane Vibration)

Author(s):  
I. Takahashi
2008 ◽  
Vol 130 (5) ◽  
Author(s):  
V. Kartik ◽  
J. A. Wickert

The parametric excitation of an axially moving plate is examined in an application where a partial foundation moves in the plane of the plate and in a direction orthogonal to the plate’s transport. The stability of the plate’s out-of-plane vibration is of interest in a magnetic tape data storage application where the read/write head is substantially narrower than the tape’s width and is repositioned during track-following maneuvers. In this case, the model’s equation of motion has time-dependent coefficients, and vibration is excited both parametrically and by direct forcing. The parametric instability of out-of-plane vibration is analyzed by using the Floquet theory for finite values of the foundation’s range of motion. For a relatively soft foundation, vibration is excited preferentially at the primary resonance of the plate’s fundamental torsional mode. As the foundation’s stiffness increases, multiple primary and combination resonances occur, and they dominate the plate’s stability; small islands, however, do exist within unstable zones of the frequency-amplitude parameter space for which vibration is marginally stable. The plate’s and foundation’s geometry, the foundation’s stiffness, and the excitation’s amplitude and frequency can be selected in order to reduce undesirable vibration that occurs along the plate’s free edge.


2013 ◽  
Vol 83 (7) ◽  
pp. 1039-1059 ◽  
Author(s):  
Qing-Xu Fu ◽  
Long Zhong ◽  
Jian-Fei Lu

1975 ◽  
Vol 97 (1) ◽  
pp. 23-32 ◽  
Author(s):  
L. S. S. Lee

Vibrations of an intermediately supported U-bend tube fall into two independent classes as an incomplete ring of single span does, namely, the in-plane vibration and the coupled twist-bending out-of-plane vibration. Natural frequencies may be expressed in terms of a coefficient p which depends on the stiffness ratio k, the ratio of lengths of spans, and the supporting conditions. The effect of the torsional flexibility of a curved bar acts to release the bending stiffness of a straight beam and hence decrease the natural frequency. Some conclusions for an incomplete ring of single span may not be equally well applicable to the U-tube case due to the effects of intermediate supports and the presence of the supporting straight segments. Results of the analytical predictions and the experimental tests of an intermediately supported U-tube are in good agreement.


1981 ◽  
Vol 36 (3) ◽  
pp. 294-296
Author(s):  
E. J. Zehnder ◽  
W. Sterzel

The IR-spectra of BaCO3 (80% 13CO32-, 90% 13CO32-) shows small bands in the ν2-region, which are assigned to short waves of 12CO32--chains with three, five or six carbonate ions


Sign in / Sign up

Export Citation Format

Share Document