Investigation of the Seismic Behaviour of Masonry Infilled Frames

Author(s):  
M. Foroughi ◽  
M.A. Barkhordari ◽  
S.M. Aqaee
2018 ◽  
Vol 14 (2) ◽  
pp. 221-237 ◽  
Author(s):  
Farhad Akhoundi ◽  
Graça Vasconcelos ◽  
Paulo Lourenço

2020 ◽  
Vol 32 ◽  
pp. 101683
Author(s):  
Mohammad Yekrangnia ◽  
Panagiotis G. Asteris

Buildings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 121 ◽  
Author(s):  
Tanja Kalman Šipoš ◽  
Kristina Strukar

In order to test the reliability of neural networks for the prediction of the behaviour of multi-storey multi-bay infilled frames, neural network processing was done on an experimental database of one-storey one-bay reinforced-concrete (RC) frames with masonry infills. From the obtained results it is demonstrated that they are acceptable for the prediction of base shear (BS) and inter-storey drift ratios (IDR) in characteristic points of the primary curve of infilled frame behaviour under seismic loads. The results obtained on one-storey one-bay infilled frames was extended to multi-bay infilled frames by evaluating and comparing numerical finite element modelling(FEM) modelling and neural network results with suggested approximating equations for the definition of bilinear capacity by defined BS and IDRs. The main goal of this paper is to offer an interpretation of the behaviour of multi-storey multi-bay masonry infilled frames according to a bilinear capacity curve, and to present the infilled frame’s response according to the contributions of frame and infill. The presented methodology is validated by experimental results from multi-storey multi-bay masonry infilled frames.


2021 ◽  
Author(s):  
Haoran Zuo ◽  
Weiping Zhang ◽  
Baotong Wang ◽  
Xianglin Gu

Abstract Seismic behaviour of masonry infilled frames has attracted extensive attentions from researchers, and it was found that infills normally experienced a diagonal compression under lateral loading. Infill was therefore assumed as an equivalent diagonal strut in structural response estimations of infilled frames, and a force-displacement curve was adopted to describe the mechanical properties of the strut. However, the influences of infill aspect ratio, vertical load acting on the surrounding frames, and opening were not systematically addressed in establishing the force-displacement relationship of infills. To investigate the effects of these influential parameters on the lateral responses of infilled walls including initial stiffness and strength, detailed three-dimensional finite element (FE) models of masonry infilled hinged steel frames are developed in ABAQUS in the present study, and a wide parametric study with respect to various aspect ratios, vertical loads, and opening sizes and locations is performed. A generalized force-displacement relationship model of infilled walls is proposed based on regression analyses of numerical results. The efficacy of the proposed model is examined by using the existing experimental test results, and it shows that the model can accurately predict the lateral stiffness and load carrying capacity of infilled walls and thus has great potential applications in structural designs and analyses for masonry infilled steel frames.


Sign in / Sign up

Export Citation Format

Share Document