Strength and Stiffness of Masonry-Infilled Frames with Central Openings Based on Experimental Results

2013 ◽  
Vol 139 (6) ◽  
pp. 974-984 ◽  
Author(s):  
Majid Mohammadi ◽  
Farzad Nikfar
2018 ◽  
Vol 14 (2) ◽  
pp. 221-237 ◽  
Author(s):  
Farhad Akhoundi ◽  
Graça Vasconcelos ◽  
Paulo Lourenço

Author(s):  
Nisha Kumari ◽  
Kaushik Kumar

Composite based materials are finding application in a large number of research and engineering spectrum due to its better mechanical properties (strength and stiffness), inherent surface finish, easiness in fabrication and installation and corrosion resistant. They are very strong and firm, yet very light in weight due to which lower weight-to-volume ratio can be achieved and stiffness to weight is 1.5 times greater than the non-ferrous materials like Aluminum. The work is undertaken in two parts. First and foremost being modeling and virtual estimation of mechanical properties using CREO and ANSYS for currently used aluminum based calipers and fabrication of the composites and testing of the same. A comparison is performed between the virtual and experimental results and also the effectiveness of composite based calipers over Aluminum ones is studied. Here two polymeric based composites are proposed for fabrication which are thermoplast and thermoset based composites respectively. The braces are modeled using a solid modeling Software, CREO and the same is tested using ANSYS.


2020 ◽  
Vol 32 ◽  
pp. 101683
Author(s):  
Mohammad Yekrangnia ◽  
Panagiotis G. Asteris

2010 ◽  
Vol 163-167 ◽  
pp. 4129-4132
Author(s):  
Chang Hai Zhai ◽  
Xiao Min Wang ◽  
Shuang Li ◽  
Li Li Xie

In Wenchuan Earthquake, masonry-infilled frames have the quite critical failures. In this paper, the reason of the failure phenomenon is analyzed and the influence of the infilled wall to performance of the frame is highlighted. An improved three-strut model for masonry-infilled frame structures is presented. Then, two RC frame specimens, which are modeled by the presented three-strut model and force-based beam-column element combined with fiber section considering compression-bending coupling in Opensees, are analyzed. The analytical results agree well with the experimental results. It is shown that the presented three-strut model is sufficient to simulate the performance of the infilled wall.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
A. M. Yosri ◽  
Gouda M. Ghanem ◽  
Mohamed A. E. Salama ◽  
Majed Alzara ◽  
Mohamed A. Farouk ◽  
...  

The aim of this paper is to assess the structural behavior of hybrid thin-walled beams which were fabricated using laminated carbon fiber reinforced polymer (CFRP). Seven hybrid (CFRP) I-beams were fabricated, instrumented, then have been tested under monotonic four-point loading in order to evaluate their behavior up to failure. In constructing the I-beam specimens which were evaluated in this study, plywood core was implemented on both the web and flanges. Several important parameters were conducted in this study considering changing both of the ply orientations and stacking sequences of laminated fibers, also changing the shear span-to-depth ratio (a/d) of the specimens. The experimental results showed that stacking sequence is the most significant parameter that influences both flexural strength and stiffness of the hybrid beams. Also, the experimental results promoted the effectiveness of the core material for enhancing the flexure (bending) stiffness of beams. Then, these results were compared with a previous simulated study which used the finite element modeling to model the beams. Also, in order to evaluate the efficiency of the CRFP beams, the results were compared to similar steel beams having the same dimensions of the CFRP beams. As compared to steel beams, the load carrying capacity of the laminated beams is being high compared with steel beams when taking into consideration their specific strength ratio.


Sign in / Sign up

Export Citation Format

Share Document