scholarly journals Traffic Sequence Charts - A Formal Visual Specification Language for Requirement Capture and Specification Development of Highly Autonomous Cars

2017 ◽  
Vol 257 ◽  
pp. 1-2 ◽  
Author(s):  
Werner Damm
Author(s):  
Pierre-Loïc Garoche

The verification of control system software is critical to a host of technologies and industries, from aeronautics and medical technology to the cars we drive. The failure of controller software can cost people their lives. This book provides control engineers and computer scientists with an introduction to the formal techniques for analyzing and verifying this important class of software. Too often, control engineers are unaware of the issues surrounding the verification of software, while computer scientists tend to be unfamiliar with the specificities of controller software. The book provides a unified approach that is geared to graduate students in both fields, covering formal verification methods as well as the design and verification of controllers. It presents a wealth of new verification techniques for performing exhaustive analysis of controller software. These include new means to compute nonlinear invariants, the use of convex optimization tools, and methods for dealing with numerical imprecisions such as floating point computations occurring in the analyzed software. As the autonomy of critical systems continues to increase—as evidenced by autonomous cars, drones, and satellites and landers—the numerical functions in these systems are growing ever more advanced. The techniques presented here are essential to support the formal analysis of the controller software being used in these new and emerging technologies.


Author(s):  
Wulf Loh ◽  
Janina Loh

In this chapter, we give a brief overview of the traditional notion of responsibility and introduce a concept of distributed responsibility within a responsibility network of engineers, driver, and autonomous driving system. In order to evaluate this concept, we explore the notion of man–machine hybrid systems with regard to self-driving cars and conclude that the unit comprising the car and the operator/driver consists of such a hybrid system that can assume a shared responsibility different from the responsibility of other actors in the responsibility network. Discussing certain moral dilemma situations that are structured much like trolley cases, we deduce that as long as there is something like a driver in autonomous cars as part of the hybrid system, she will have to bear the responsibility for making the morally relevant decisions that are not covered by traffic rules.


Author(s):  
Tengfei Li ◽  
Jing Liu ◽  
Haiying Sun ◽  
Xiang Chen ◽  
Lipeng Zhang ◽  
...  

AbstractIn the past few years, significant progress has been made on spatio-temporal cyber-physical systems in achieving spatio-temporal properties on several long-standing tasks. With the broader specification of spatio-temporal properties on various applications, the concerns over their spatio-temporal logics have been raised in public, especially after the widely reported safety-critical systems involving self-driving cars, intelligent transportation system, image processing. In this paper, we present a spatio-temporal specification language, STSL PC, by combining Signal Temporal Logic (STL) with a spatial logic S4 u, to characterize spatio-temporal dynamic behaviors of cyber-physical systems. This language is highly expressive: it allows the description of quantitative signals, by expressing spatio-temporal traces over real valued signals in dense time, and Boolean signals, by constraining values of spatial objects across threshold predicates. STSL PC combines the power of temporal modalities and spatial operators, and enjoys important properties such as finite model property. We provide a Hilbert-style axiomatization for the proposed STSL PC and prove the soundness and completeness by the spatio-temporal extension of maximal consistent set and canonical model. Further, we demonstrate the decidability of STSL PC and analyze the complexity of STSL PC. Besides, we generalize STSL to the evolution of spatial objects over time, called STSL OC, and provide the proof of its axiomatization system and decidability.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 420
Author(s):  
Stefano Quer ◽  
Luz Garcia

Research on autonomous cars has become one of the main research paths in the automotive industry, with many critical issues that remain to be explored while considering the overall methodology and its practical applicability. In this paper, we present an industrial experience in which we build a complete autonomous driving system, from the sensor units to the car control equipment, and we describe its adoption and testing phase on the field. We report how we organize data fusion and map manipulation to represent the required reality. We focus on the communication and synchronization issues between the data-fusion device and the path-planner, between the CPU and the GPU units, and among different CUDA kernels implementing the core local planner module. In these frameworks, we propose simple representation strategies and approximation techniques which guarantee almost no penalty in terms of accuracy and large savings in terms of memory occupation and memory transfer times. We show how we adopt a recent implementation on parallel many-core devices, such as CUDA-based GPGPU, to reduce the computational burden of rapidly exploring random trees to explore the state space along with a given reference path. We report on our use of the controller and the vehicle simulator. We run experiments on several real scenarios, and we report the paths generated with the different settings, with their relative errors and computation times. We prove that our approach can generate reasonable paths on a multitude of standard maneuvers in real time.


Sign in / Sign up

Export Citation Format

Share Document