relative errors
Recently Published Documents


TOTAL DOCUMENTS

741
(FIVE YEARS 313)

H-INDEX

26
(FIVE YEARS 7)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 651
Author(s):  
Jakub Bronicki ◽  
Dominik Grochala ◽  
Artur Rydosz

In this paper, we describe the device developed to control the deposition parameters to manage the glancing angle deposition (GLAD) process of metal-oxide thin films for gas-sensing applications. The GLAD technique is based on a set of parameters such as the tilt, rotation, and substrate temperature. All parameters are crucial to control the deposition of nanostructured thin films. Therefore, the developed GLAD controller enables the control of all parameters by the scientist during the deposition. Additionally, commercially available vacuum components were used, including a three-axis manipulator. High-precision readings were tested, where the relative errors calculated using the parameters provided by the manufacturer were 1.5% and 1.9% for left and right directions, respectively. However, thanks to the formula developed by our team, the values were decreased to 0.8% and 0.69%, respectively.


2022 ◽  
pp. 014459872110695
Author(s):  
Chunhua Zhang ◽  
Jiahui Shen ◽  
Mei Wan

The effective thermal conductivity (ETC) model of loose residual coal in goaf is a method to study the heat transfer law of spontaneous combustion in goaf. In order to study the effect of coal particle size and ambient temperature on heat transfer, coal samples of different sizes were taken from the FuSheng (FS) mine, and the void fraction, the thermal conductivity (TC) of the residual coal under different ambient temperature were tested. Additionally, four types of ETC models of loose residual coal in goaf were obtained and the average relative errors of the TC were analyzed. The results showed that the void fraction, the coal particle size and ambient temperature have different effects on the spontaneous combustion of the residual coal. The effect of coal sample size on the heat transfer is 100 times that of the ambient temperature. The changes in the ETC and average relative error of the different models were consistent. The heat transfer in the spontaneous combustion of residual coal has a direct relationship with the spatial distribution and heat transfer modes of the loose residual coal in the goaf.


2022 ◽  
Author(s):  
Stephen J. Barnes ◽  
Clifford R. Stanley ◽  
Valentina Taranovic

Abstract The Nova-Bollinger Ni-Cu-platinum group element (PGE) deposit in the Fraser zone of the Albany-Fraser orogen consists of two main orebodies, Nova and Bollinger, hosted by the same tube-shaped intrusion but having distinctly different Ni tenors of around 6.5 and 4.8 wt %, respectively. Nova is also higher in Pd, but Cu and Pt tenors are similar. Both deposits have very low PGE tenors, with average Pd concentrations of 110 ppb in massive sulfide at Bollinger and 136 ppb at Nova. The Nova and Bollinger orebodies show relatively little internal differentiation overall on deposit scale but show strong differentiation into chalcopyrite-rich and chalcopyrite-poor regions at a meter scale. This differentiation is more prevalent at Nova, where massive sulfide-filled vein arrays are more extensively developed, and in massive ores, particularly veins, than in net-textured ores. Net-textured and disseminated ores have on average Ni and Cu grades and tenors similar to those of massive, semimassive, and breccia ores in the same orebody but a smaller range of variation, largely due to a more limited extent of sulfide liquid fractionation and higher average concentrations of Pt and Pd than adjacent massive ores. Unusually for differentiated magmatic sulfides, there is no systematic positive correlation between Pt, Pd, and Cu. A partial explanation for the lack of a Pd-Cu correlation is that Pd was partitioned into peritectic pentlandite in the middle stages of sulfide liquid solidification. This explanation is not applicable to Pt, as Pt characteristically forms its own phases rather than residing in base metal sulfides. PGE tenors are very low in both orebodies, very similar to those observed in other Ni-Cu-Co sulfide ores in orogenic settings, notably the Savannah and Savannah North orebodies. This depletion is attributed to sulfide retention in the mantle source of the parent magmas rather than to previous fractional extraction of sulfide liquid in staging chambers or feeder networks. The higher Ni and Pd tenors at Nova are attributed to reworking and upgrading of precursor sulfide liquid originally deposited upstream at the Bollinger site. Replicate analyses of multiple jaw-crusher splits returned highly variable Pt and Au assays but much smaller relative errors in the other PGEs. The poor Pt and Au reproducibilities are attributed to nugget effects, explicable by much of the Pt and Au in the samples being present in sparse Pt- and Au-rich grains. This is principally true for Pt in massive rather than disseminated ores, accounting for a strong contrast in the distribution of Pt/Pd ratios between the two ore types. Numerical simulation suggests that Pt is predominantly resident in Pt-rich platinum group minerals with grain diameters of 100 μm or more and that at the low (<100 ppb) concentrations in these ores, this results in most assays significantly underreporting Pt. This is likely to be true in other low-PGE ores, such that apparent negative Pt anomalies in massive ores may in such cases be attributable to sampling artifacts.


SPE Journal ◽  
2022 ◽  
pp. 1-12
Author(s):  
Quanshu Zeng ◽  
Zhiming Wang ◽  
Jinchao Wang ◽  
Qiqi Wanyan ◽  
Guosheng Ding ◽  
...  

Summary The leaching of a salt cavern will trigger a series of rock-fluid interactions, including salt rock dissolution, cavity expansion, and brine transport caused by convection, turbulence, and diffusion effects. These interactions have influences on one another. The primary objectives of this study include developing a 3D multiphysical coupled model for horizontal salt cavern leaching and quantifying these interactions. The species transport equation and standard κ-ε equation were combined to describe the brine transport dynamics within the cavity. Based on the velocity and concentration distribution characteristics predicted, the interface movement equation implemented with mesh deformation techniques was applied to describe the cavity expansion. Next, the Volgograd cavern monitored data were collected for model validation. The predicted results are consistent with the field data. The average relative errors are 11.0% for brine displacing concentration and 4.5% for cavity volume. The results suggest that the cavity can be divided into three regions, including the main flow region, circulation region, and reflux region. The results also suggest that the brine concentration distribution is relatively uniform. With the dissolution threshold angle and anisotropic dissolution rates considered, the resultant cavity cross section is crown top and cone bottom. The results also show that the cavity can be divided into dissolution and erosion sections according to its position relative to the injection point.


2021 ◽  
Vol 21 (6) ◽  
pp. 357-367
Author(s):  
Taeuk Kang ◽  
Youngkyu Jin ◽  
Hyowon Seo ◽  
Namjoo Lee ◽  
Chang-Sung Kim

Sediment measurement data are utilized as basic data for various river plans and research. The aim of this study is to compare between sediment budget analysis and riverbed monitoring results. The spatial range was from the Gongju-si (Gemganggyo) station to the Buyeo-gun (Baekjegyo) station in Geumgang, and the temporal range in this study was from 2011 to 2016. The estimated change in riverbed amount using the sediment budget analysis was 2,430,243 tons for sediments loaded over six years in the section. The analyzed riverbed changes sedimentation using the riverbed monitoring method were 2,165,146 tons based on the low level and 3,055,489 tons based on the flood level. Based on the riverbed monitoring performance, the relative errors in the sediment budget analysis results through sediment measurements were 10.9% and -25.7% for the low water and flood levels, respectively.


2021 ◽  
Vol 47 (4) ◽  
pp. 1-19
Author(s):  
Noah Peres ◽  
Andrew Ray Lee ◽  
Uri Keich

We present ShiftConvolvePoibin, a fast exact method to compute the tail of a Poisson-binomial distribution (PBD). Our method employs an exponential shift to retain its accuracy when computing a tail probability, and in practice we find that it is immune to the significant relative errors that other methods, exact or approximate, can suffer from when computing very small tail probabilities of the PBD. The accompanying R package is also competitive with the fastest implementations for computing the entire PBD.


Aerospace ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Bing Fan ◽  
Jie Huang

In the traditional investigations on the drag and heat reduction of hypersonic spiked models, only the aerodynamic calculation is performed, and the structural temperature cannot be obtained. This paper adopted the loosely coupled method to study its efficiency of drag and heat reduction, in which the feedback effect of wall temperature rise on aeroheating is considered. The aeroheating and structural temperature were obtained by the CFD and ABAQUS software respectively. The coupling analysis of the hypersonic circular tube was carried out to verify the accuracy of the fluid field, the structural temperature, and the coupled method. Compared with experimental results, the calculated results showed that the relative errors of stagnation heat flux and stagnation temperature were 1.34% and 4.95% respectively, and thus the effectiveness of the coupled method was verified. Installing a spike reduced the total drag of the forebody. The spiked model with an aerodisk reduced the aeroheating of the forebody, while the model without an aerodisk intensified the aeroheating. The spiked model with a planar aerodisk had the best performance on drag and heat reduction among all the models. In addition, increasing the length of the spike reduced the drag and temperature of the forebody. With the increase of the length, the change rates of drag, pressure, heat flux, and temperature decreased gradually. Increasing the diameter of the aerodisk also reduced the temperature of the forebody, while the efficiency of forebody drag reduction first increased and then decreased. In conclusion, the heat and drag reduction must be considered comprehensively for the optimal design of the spike.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 108
Author(s):  
Olha Chernukha ◽  
Yurii Bilushchak ◽  
Natalya Shakhovska ◽  
Rastislav Kulhánek

We propose and justify a numerical method for computing the double integral with variable upper limits that leads to the variableness of the region of integration. Imposition of simple variables as functions for upper limits provides the form of triangles of integration region and variable in the external limit of integral leads to a continuous set of similar triangles. A variable grid is overlaid on the integration region. We consider three cases of changes of the grid for the division of the integration region into elementary volumes. The first is only the size of the imposed grid changes with the change of variable of the external upper limit. The second case is the number of division elements changes with the change of the external upper limit variable. In the third case, the grid size and the number of division elements change after fixing their multiplication. In these cases, the formulas for computing double integrals are obtained based on the application of cubatures in the internal region of integration and performing triangulation division along the variable boundary. The error of the method is determined by expanding the double integral into the Taylor series using Barrow’s theorem. Test of efficiency and reliability of the obtained formulas of the numerical method for three cases of ways of the division of integration region is carried out on examples of the double integration of sufficiently simple functions. Analysis of the obtained results shows that the smallest absolute and relative errors are obtained in the case of an increase of the number of division elements changes when the increase of variable of the external upper limit and the grid size is fixed.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 50
Author(s):  
Juchen Zhang ◽  
Shasha Song ◽  
Junsheng Zhang ◽  
Weijie Chang ◽  
Haidong Yang ◽  
...  

Due to its advantages of good surface quality and not being affected by material hardness, electrochemical machining (ECM) is suitable for the machining of blisk, which is known for its hard-to-machine materials and complex shapes. However, because of the unstable processing and low machining quality, conventional linear feeding blisk ECM has difficulty in obtaining a complex structure. To settle this problem, the vibration-assisted ECM method is introduced to machine blisk channels in this paper. To analyze the influence of vibration on the process of ECM, a two-phase flow field model is established based on the RANS k-ε turbulence model, which is suitable for narrow flow field and high flow velocity. The model is coupled with the electric field, the flow field, and the temperature field to form a multi-physics field coupling model. In addition, dynamic simulation is carried out on account of the multi-physics field coupling model and comparative experiments are conducted using the self-developed ECM machine tool. While a shortcut appeared in the contrast experiment, machining with vibration-assisted channel ECM achieved fine machining stability and surface quality. The workpiece obtained by vibration-assisted channel ECM has three narrow and straight channels, with a width of less than 3 mm, an aspect ratio of more than 8, and an average surface roughness Ra in the hub of 0.327 μm. Compared with experimental data, the maximum relative errors of simulation are only 1.05% in channel width and 8.11% in machining current, which indicates that the multi-physics field coupling model is close to machining reality.


Author(s):  
Johan Gustafsson ◽  
Jan Taprogge

Abstract Objective: This study considers the error distributions for time-integrated activity (TIA) of single-time-point (STP) methods for patient-specific dosimetry in radionuclide therapy. Approach: The general case with the same pharmaceutical labelled with different radionuclides for imaging and therapy are considered for a mono-exponential time-activity curve. Two methods for STP dosimetry, both based on the combination of one activity estimate with the population-mean effective decay constant, are investigated. The cumulative distribution functions (CDFs) and the probability density functions for the two methods are analytically derived for arbitrary distributions of the biological decay constant. The CDFs are used for determining 95 % coverage intervals of the relative errors for different combinations of imaging time points, physical decay constants, and relative standard deviations of the biological decay constant. Two examples, in the form of kidney dosimetry in [177Lu]Lu-DOTA-TATE therapy and tumour dosimetry for Na[131I]I therapy for thyroid cancer with dosimetry based on imaging of Na[124I]I, are also studied in more detail with analysis of the sensitivity with respect to errors in the mean biological decay constant and to higher moments of the distribution. Main results: The distributions of the relative errors are negatively skewed, potentially leading to the situation that some TIA estimates are highly underestimated even if the majority of estimates are close to the true value. Significance: The main limitation of the studied STP dosimetry methods is thereby the risk of large underestimations of the TIA.


Sign in / Sign up

Export Citation Format

Share Document