A Method of Lines Based on Immersed Finite Elements for Parabolic Moving Interface Problems

2013 ◽  
Vol 5 (04) ◽  
pp. 548-568 ◽  
Author(s):  
Tao Lin ◽  
Yanping Lin ◽  
Xu Zhang

AbstractThis article extends the finite element method of lines to a parabolic initial boundary value problem whose diffusion coefficient is discontinuous across an interface that changes with respect to time. The method presented here uses immersed finite element (IFE) functions for the discretization in spatial variables that can be carried out over a fixed mesh (such as a Cartesian mesh if desired), and this feature makes it possible to reduce the parabolic equation to a system of ordinary differential equations (ODE) through the usual semi-discretization procedure. Therefore, with a suitable choice of the ODE solver, this method can reliably and efficiently solve a parabolic moving interface problem over a fixed structured (Cartesian) mesh. Numerical examples are presented to demonstrate features of this new method.

1995 ◽  
Vol 05 (03) ◽  
pp. 351-365 ◽  
Author(s):  
V. SHUTYAEV ◽  
O. TRUFANOV

This paper is concerned with the numerical analysis of the mathematical model for a semiconductor device with the use of the Boltzmann equation. A mixed initial-boundary value problem for nonstationary Boltzmann-Poisson system in the case of one spatial variable is considered. A numerical algorithm for solving this problem is constructed and justified. The algorithm is based on an iterative process and the finite element method. A numerical example is presented.


2019 ◽  
Vol 40 (4) ◽  
pp. 2415-2449
Author(s):  
D C Antonopoulos ◽  
V A Dougalis ◽  
G Kounadis

Abstract We consider a simple initial-boundary-value problem for the shallow water equations in one space dimension. We discretize the problem in space by the standard Galerkin finite element method on a quasiuniform mesh and in time by the classical four-stage, fourth order, explicit Runge–Kutta scheme. Assuming smoothness of solutions, a Courant number restriction and certain hypotheses on the finite element spaces, we prove $L^{2}$ error estimates that are of fourth-order accuracy in the temporal variable and of the usual, due to the nonuniform mesh, suboptimal order in space. We also make a computational study of the numerical spatial and temporal orders of convergence, and of the validity of a hypothesis made on the finite element spaces.


2013 ◽  
Vol 18 (1) ◽  
pp. 80-96
Author(s):  
Andrejs Cebers ◽  
Harijs Kalis

Dynamics and hysteresis of an elongated droplet under the action of a rotating magnetic field is considered for mathematical modelling. The shape of droplet is found by regularization of the ill-posed initial–boundary value problem for nonlinear partial differential equation (PDE). It is shown that two methods of the regularization – introduction of small viscous bending torques and construction of monotonous continuous functions are equivalent. Their connection with the regularization of the ill-posed reverse problems for the parabolic equation of heat conduction is remarked. Spatial discretization is carried out by the finite difference scheme (FDS). Time evolution of numerical solutions is obtained using method of lines for solving a large system of ordinary differential equations (ODE).


Author(s):  
Georgios Akrivis ◽  
Buyang Li

Abstract For a class of compatible profiles of initial data describing bulk phase regions separated by transition zones, we approximate the Cauchy problem of the Allen–Cahn (AC) phase field equation by an initial-boundary value problem in a bounded domain with the Dirichlet boundary condition. The initial-boundary value problem is discretized in time by the backward difference formulae (BDF) of order $1\leqslant q\leqslant 5$ and in space by the Galerkin finite element method of polynomial degree $r-1$, with $r\geqslant 2$. We establish an error estimate of $O(\tau ^q\varepsilon ^{-q-\frac 12}+h^{r}\varepsilon ^{-r-\frac 12}+{e}^{-c/\varepsilon })$ with explicit dependence on the small parameter $\varepsilon$ describing the thickness of the phase transition layer. The analysis utilizes the maximum-norm stability of BDF and finite element methods with respect to the boundary data, the discrete maximal $L^p$-regularity of BDF methods for parabolic equations and the Nevanlinna–Odeh multiplier technique combined with a time-dependent inner product motivated by a spectrum estimate of the linearized AC operator.


Author(s):  
Manas Vijay Upadhyay ◽  
Jérémy Bleyer

Abstract A time-explicit Runge-Kutta discontinuous Galerkin (RKDG) finite element scheme is proposed to solve the dislocation transport initial boundary value problem in 3D. The dislocation density transport equation, which lies at the core of this problem, is a first-order unsteady-state advection-reaction-type hyperbolic partial differential equation; the DG approach is well suited to solve such equations that lack any diffusion terms. The development of the RKDG scheme follows the method of lines approach. First, a space semi-discretization is performed using the DG approach with upwinding to obtain a system of ordinary differential equations in time. Then, time discretization is performed using explicit RK schemes to solve this system. The 3D numerical implementation of the RKDG scheme is performed for the first-order (forward Euler), second-order and third-order RK methods using the strong stability preserving approach. These implementations provide (quasi-)optimal convergence rates for smooth solutions. A slope limiter is used to prevent spurious Gibbs oscillations arising from high-order space approximations (polynomial degree ≥ 1) of rough solutions. A parametric study is performed to understand the influence of key parameters of the RKDG scheme on the stability of the solution predicted during a screw dislocation transport simulation. Then, annihilation of two oppositely signed screw dislocations and the expansion of a polygonal dislocation loop are simulated. The RKDG scheme is able to resolve the shock generated during dislocation annihilation without any spurious oscillations and predict the prismatic loop expansion with very low numerical diffusion. These results demonstrate the robustness of the scheme.


Sign in / Sign up

Export Citation Format

Share Document