1D Exact Elastic-Perfectly Plastic Solid Riemann Solver and Its Multi-Material Application

2017 ◽  
Vol 9 (3) ◽  
pp. 621-650 ◽  
Author(s):  
Si Gao ◽  
Tiegang Liu

AbstractThe equation of state (EOS) plays a crucial role in hyperbolic conservation laws for the compressible fluid. Whereas, the solid constitutive model with elastic-plastic phase transition makes the analysis of the solid Riemann problem more difficult. In this paper, one-dimensional elastic-perfectly plastic solid Riemann problem is investigated and its exact Riemann solver is proposed. Different from previous works treating the elastic and plastic phases integrally, we resolve the elastic wave and plastic wave separately to understand the complicate nonlinear waves within the solid and then assemble them together to construct the exact Riemann solver for the elastic-perfectly plastic solid. After that, the exact solid Riemann solver is associated with the fluid Riemann solver to decouple the fluid-solid multi-material interaction. Numerical tests, including gas-solid, water-solid high-speed impact problems are simulated by utilizing the modified ghost fluid method (MGFM).

2001 ◽  
Vol 449 ◽  
pp. 395-411 ◽  
Author(s):  
LUCIANO REZZOLLA ◽  
OLINDO ZANOTTI

A Riemann problem with prescribed initial conditions will produce one of three possible wave patterns corresponding to the propagation of the different discontinuities that will be produced once the system is allowed to relax. In general, when solving the Riemann problem numerically, the determination of the specific wave pattern produced is obtained through some initial guess which can be successively discarded or improved. We here discuss a new procedure, suitable for implementation in an exact Riemann solver in one dimension, which removes the initial ambiguity in the wave pattern. In particular we focus our attention on the relativistic velocity jump between the two initial states and use this to determine, through some analytic conditions, the wave pattern produced by the decay of the initial discontinuity. The exact Riemann problem is then solved by means of calculating the root of a nonlinear equation. Interestingly, in the case of two rarefaction waves, this root can even be found analytically. Our procedure is straightforward to implement numerically and improves the efficiency of numerical codes based on exact Riemann solvers.


1968 ◽  
Vol 35 (2) ◽  
pp. 372-378 ◽  
Author(s):  
Chi-Hung Mok

It is shown that initial and boundary-value problems involving high-speed elastic-plastic deformation with spherical symmetry can be solved using a finite-difference numerical technique. Numerical solutions for the dynamic expansion of a spherical cavity under a constant pressure are presented to demonstrate the nature and capability of the numerical scheme. While the solution for an elastic material agrees closely with the exact one, the solution for an elastic, perfectly plastic material also receives support from Green’s analytic predictions concerning the motion of the elastic-plastic boundary. At large times, the asymptotic solution of the dynamic elastic-plastic problem is different from the quasi-static solution. This result indicates that the concept of quasi-static approximation may not hold in dynamic plasticity. A nonlinear dependence of the plastic solution on the boundary condition is also observed.


Sign in / Sign up

Export Citation Format

Share Document