Differential Formulation of Discontinuous Galerkin and Related Methods for the Navier-Stokes Equations

2013 ◽  
Vol 13 (4) ◽  
pp. 1013-1044 ◽  
Author(s):  
Haiyang Gao ◽  
Z. J. Wang ◽  
H. T. Huynh

AbstractA new approach to high-order accuracy for the numerical solution of conservation laws introduced by Huynh and extended to simplexes by Wang and Gao is renamed CPR (correction procedure or collocation penalty via reconstruction). The CPR approach employs the differential form of the equation and accounts for the jumps in flux values at the cell boundaries by a correction procedure. In addition to being simple and economical, it unifies several existing methods including discontinuous Galerkin, staggered grid, spectral volume, and spectral difference. To discretize the dif-fusion terms, we use the BR2 (Bassi and Rebay), interior penalty, compact DG (CDG), and I-continuous approaches. The first three of these approaches, originally derived using the integral formulation, were recast here in the CPR framework, whereas the I-continuous scheme, originally derived for a quadrilateral mesh, was extended to a triangular mesh. Fourier stability and accuracy analyses for these schemes on quadrilateral and triangular meshes are carried out. Finally, results for the Navier-Stokes equations are shown to compare the various schemes as well as to demonstrate the capability of the CPR approach.

1993 ◽  
Vol 115 (4) ◽  
pp. 678-685 ◽  
Author(s):  
M. J. Braun ◽  
F. K. Choy ◽  
Y. M. Zhou

The flow in a hydrostatic pocket is described by a mathematical model that uses the Navier-Stokes equations written in terms of the primary variables, u, v, and p. Using the conservative formulation, a finite difference method is applied through a staggered grid. The power law scheme is applied in the treatment of the convective terms for this highly recirculating flow. The discussion pertaining to the convergence of the numerical scheme and the computational error, shows that the strict convergence criteria applied to both velocities and pressure were successfully statisfied. The numerical model is applied in a parametric mode to the study of the velocities, the pressure patterns, and shear forces that characterize the flow in a square (α = 1), deep (α>1), and shallow (α≪1) hydrostatic pocket. The effects of the variation of the location and angle of the hydrostatic jet are also investigated.


Sign in / Sign up

Export Citation Format

Share Document