The Mass-Preserving S-DDM Scheme for Two-Dimensional Parabolic Equations

2016 ◽  
Vol 19 (2) ◽  
pp. 411-441 ◽  
Author(s):  
Zhongguo Zhou ◽  
Dong Liang

AbstractIn the paper, we develop and analyze a new mass-preserving splitting domain decomposition method over multiple sub-domains for solving parabolic equations. The domain is divided into non-overlapping multi-bock sub-domains. On the interfaces of sub-domains, the interface fluxes are computed by the semi-implicit (explicit) flux scheme. The solutions and fluxes in the interiors of sub-domains are computed by the splitting one-dimensional implicit solution-flux coupled scheme. The important feature is that the proposed scheme is mass conservative over multiple non-overlapping sub-domains. Analyzing the mass-preserving S-DDM scheme is difficult over non-overlapping multi-block sub-domains due to the combination of the splitting technique and the domain decomposition at each time step. We prove theoretically that our scheme satisfies conservation of mass over multi-block non-overlapping sub-domains and it is unconditionally stable. We further prove the convergence and obtain the error estimate in L2-norm. Numerical experiments confirm theoretical results.

2016 ◽  
Vol Volume 23 - 2016 - Special... ◽  
Author(s):  
Rim GUETAT

In this paper, we present a new parallel algorithm for time dependent problems based on coupling parareal with non-overlapping domain decomposition method in order to increase parallelism in time and in space. For this we focus on the iterative methods of parallization in space to solve the interface problem like Neumann-Neumann method. In the new algorithm, the coarse temporel propagator is defined on the global domain and the Neumann-Neumann method is chosen as a fine propagator with a few iterations. We present the rigorous convergence analysis of the new coupled algorithm on bounded time interval. Numerical experiments illustrate the performance of this new algorithm and confirm our analysis. RÉSUMÉ. Dans ce papier, nous présentons un nouvel algorithme parallèle pour les problèmes dé-pendant du temps basé sur le couplage du pararéel avec les méthodes de décomposition de domaine sans recouvrement afin d'augmenter le parallélisme dans le temps et l'espace. Nous nous concen-trons sur les méthodes itératives de parallélisation en espace pour résoudre le problème d'interface par la méthode de Neumann-Neumann. Dans ce nouvel algorithme, le propagateur grossier est dé-finie sur le domaine global et la méthode de Neumann-Neumann est choisi pour le propagateur fin avec quelques itérations. Nous présentons l'analyse rigoureuse de convergence du nouvel algorithme couplé sur un intervalle de temps borné. Des expèriences numériques illustrent les performances de ce nouvel algorithme et confirment notre analyse. Dans ce papier, nous présentons un nouvel algorithme parallèle pour les problèmes dépendantdu temps basé sur le couplage du pararéel avec les méthodes de décomposition de domainesans recouvrement afin d’augmenter le parallélisme dans le temps et l’espace. Nous nous concentronssur les méthodes itératives de parallélisation en espace pour résoudre le problème d’interfacepar la méthode de Neumann-Neumann. Dans ce nouvel algorithme, le propagateur grossier est définiesur le domaine global et la méthode de Neumann-Neumann est choisi pour le propagateur finavec quelques itérations. Nous présentons l’analyse rigoureuse de convergence du nouvel algorithmecouplé sur un intervalle de temps borné. Des expèriences numériques illustrent les performances dece nouvel algorithme et confirment notre analyse.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Chunye Gong ◽  
Weimin Bao ◽  
Guojian Tang ◽  
Yuewen Jiang ◽  
Jie Liu

The computational complexity of one-dimensional time fractional reaction-diffusion equation isO(N2M)compared withO(NM)for classical integer reaction-diffusion equation. Parallel computing is used to overcome this challenge. Domain decomposition method (DDM) embodies large potential for parallelization of the numerical solution for fractional equations and serves as a basis for distributed, parallel computations. A domain decomposition algorithm for time fractional reaction-diffusion equation with implicit finite difference method is proposed. The domain decomposition algorithm keeps the same parallelism but needs much fewer iterations, compared with Jacobi iteration in each time step. Numerical experiments are used to verify the efficiency of the obtained algorithm.


2019 ◽  
Vol 19 (4) ◽  
pp. 703-722 ◽  
Author(s):  
Gabriel R. Barrenechea ◽  
Michał Bosy ◽  
Victorita Dolean ◽  
Frédéric Nataf ◽  
Pierre-Henri Tournier

AbstractSolving the Stokes equation by an optimal domain decomposition method derived algebraically involves the use of nonstandard interface conditions whose discretisation is not trivial. For this reason the use of approximation methods such as hybrid discontinuous Galerkin appears as an appropriate strategy: on the one hand they provide the best compromise in terms of the number of degrees of freedom in between standard continuous and discontinuous Galerkin methods, and on the other hand the degrees of freedom used in the nonstandard interface conditions are naturally defined at the boundary between elements. In this paper, we introduce the coupling between a well chosen discretisation method (hybrid discontinuous Galerkin) and a novel and efficient domain decomposition method to solve the Stokes system. We present the detailed analysis of the hybrid discontinuous Galerkin method for the Stokes problem with nonstandard boundary conditions. The full stability and convergence analysis of the discretisation method is presented, and the results are corroborated by numerical experiments. In addition, the advantage of the new preconditioners over more classical choices is also supported by numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document