Two-Dimensional Lattice Boltzmann Model for Droplet Impingement and Breakup in Low Density Ratio Liquids

2011 ◽  
Vol 10 (3) ◽  
pp. 767-784 ◽  
Author(s):  
Amit Gupta ◽  
Ranganathan Kumar

AbstractA two-dimensional lattice Boltzmann model has been employed to simulate the impingement of a liquid drop on a dry surface. For a range of Weber number, Reynolds number and low density ratios, multiple phases leading to breakup have been obtained. An analytical solution for breakup as function of Reynolds and Weber number based on the conservation of energy is shown to match well with the simulations. At the moment breakup occurs, the spread diameter is maximum; it increases with Weber number and reaches an asymptotic value at a density ratio of 10. Droplet breakup is found to be more viable for the case when the wall is non-wetting or neutral as compared to a wetting surface. Upon breakup, the distance between the daughter droplets is much higher for the case with a non-wetting wall, which illustrates the role of the surface interactions in the outcome of the impact.

AIChE Journal ◽  
2005 ◽  
Vol 52 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Hervé Duval ◽  
David Masson ◽  
Jean-Bernard Guillot ◽  
Philippe Schmitz ◽  
Dominique d'Humières

2014 ◽  
Vol 16 (4) ◽  
pp. 892-912 ◽  
Author(s):  
Duo Zhang ◽  
K. Papadikis ◽  
Sai Gu

AbstractIn the current study, a two-dimensional multi-relaxation time (MRT) lattice Boltzmann model which can tolerate high density ratios and low viscosity is employed to simulate the liquid droplet impact onto a curved target. The temporal variation of the film thickness at the north pole of the target surface is investigated. Three different temporal phases of the dynamics behavior, namely, the initial drop deformation phase, the inertia dominated phase and the viscosity dominated phase are reproduced and studied. The effect of the Reynolds number, Weber number and Galilei number on the film flow dynamics is investigated. In addition, the dynamic behavior of the droplet impact onto the side of the curved target is shown, and the effect of the contact angle, the Reynolds number and the Weber number are investigated.


Author(s):  
Longjian Li ◽  
Jianbang Zeng ◽  
Quan Liao ◽  
Wenzhi Cui

A new lattice Boltzmann model, which is based on Shan-Chen (SC) model, is proposed to describe liquid-vapor phase transitions. The new model is validated through simulation of the one-component phase transition process. Compared with the simulation results of van der Waals fluid and the Maxwell equal-area construction, the results of new model are closer to the analytical solutions than those of SC model and Zhang model. Since the range of temperature and the maximum density ratio are increased, and the value of maximum spurious current is between those of SC and Zhang models, it is believed that this new model has better stability than SC and Zhang models. Therefore, the application scope of this new model is expanded. According to the principle of corresponding states in Engineering Thermodynamics, the simulations of water and ammonia phase transition process are implemented by using this new model with different equations of state. Compared to the experimental data of water and ammonia, the results show that the Peng-Robinson equation of state is more suitable to describe the water, ammonia and other substances phase transition process. Therefore, these simulation results have great significance for the real engineering applications.


Sign in / Sign up

Export Citation Format

Share Document