Two-dimensional lattice Boltzmann model for magnetohydrodynamics

2002 ◽  
Vol 66 (4) ◽  
Author(s):  
Werner Schaffenberger ◽  
Arnold Hanslmeier
2011 ◽  
Vol 10 (3) ◽  
pp. 767-784 ◽  
Author(s):  
Amit Gupta ◽  
Ranganathan Kumar

AbstractA two-dimensional lattice Boltzmann model has been employed to simulate the impingement of a liquid drop on a dry surface. For a range of Weber number, Reynolds number and low density ratios, multiple phases leading to breakup have been obtained. An analytical solution for breakup as function of Reynolds and Weber number based on the conservation of energy is shown to match well with the simulations. At the moment breakup occurs, the spread diameter is maximum; it increases with Weber number and reaches an asymptotic value at a density ratio of 10. Droplet breakup is found to be more viable for the case when the wall is non-wetting or neutral as compared to a wetting surface. Upon breakup, the distance between the daughter droplets is much higher for the case with a non-wetting wall, which illustrates the role of the surface interactions in the outcome of the impact.


AIChE Journal ◽  
2005 ◽  
Vol 52 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Hervé Duval ◽  
David Masson ◽  
Jean-Bernard Guillot ◽  
Philippe Schmitz ◽  
Dominique d'Humières

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 439 ◽  
Author(s):  
Sara Venturi ◽  
Silvia Di Francesco ◽  
Martin Geier ◽  
Piergiorgio Manciola

This work compares three forcing schemes for a recently introduced cascaded lattice Boltzmann shallow water model: a basic scheme, a second-order scheme, and a centred scheme. Although the force is applied in the streaming step of the lattice Boltzmann model, the acceleration is also considered in the transformation to central moments. The model performance is tested for one and two dimensional benchmarks.


Sign in / Sign up

Export Citation Format

Share Document