scholarly journals Runge-Kutta Discontinuous Local Evolution Galerkin Methods for the Shallow Water Equations on the Cubed-Sphere Grid

2017 ◽  
Vol 10 (2) ◽  
pp. 373-419 ◽  
Author(s):  
Yangyu Kuang ◽  
Kailiang Wu ◽  
Huazhong Tang

AbstractThe paper develops high order accurate Runge-Kutta discontinuous local evolution Galerkin (RKDLEG) methods on the cubed-sphere grid for the shallow water equations (SWEs). Instead of using the dimensional splitting method or solving one-dimensional Riemann problem in the direction normal to the cell interface, the RKDLEG methods are built on genuinely multi-dimensional approximate local evolution operator of the locally linearized SWEs on a sphere by considering all bicharacteristic directions. Several numerical experiments are conducted to demonstrate the accuracy and performance of our RKDLEG methods, in comparison to the Runge-Kutta discontinuous Galerkin method with Godunov's flux etc.

2020 ◽  
Vol 35 (6) ◽  
pp. 355-366
Author(s):  
Vladimir V. Shashkin ◽  
Gordey S. Goyman

AbstractThis paper proposes the combination of matrix exponential method with the semi-Lagrangian approach for the time integration of shallow water equations on the sphere. The second order accuracy of the developed scheme is shown. Exponential semi-Lagrangian scheme in the combination with spatial approximation on the cubed-sphere grid is verified using the standard test problems for shallow water models. The developed scheme is as good as the conventional semi-implicit semi-Lagrangian scheme in accuracy of slowly varying flow component reproduction and significantly better in the reproduction of the fast inertia-gravity waves. The accuracy of inertia-gravity waves reproduction is close to that of the explicit time-integration scheme. The computational efficiency of the proposed exponential semi-Lagrangian scheme is somewhat lower than the efficiency of semi-implicit semi-Lagrangian scheme, but significantly higher than the efficiency of explicit, semi-implicit, and exponential Eulerian schemes.


Sign in / Sign up

Export Citation Format

Share Document