scholarly journals Development and Application of Real-time Bridge Scour Monitoring System

Engineering ◽  
2011 ◽  
Vol 03 (10) ◽  
pp. 978-985 ◽  
Author(s):  
Joongu Kang
2014 ◽  
Vol 9 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Mirosław Skibniewski ◽  
Hui-Ping Tserng ◽  
Shen-Haw Ju ◽  
Chung-Wei Feng ◽  
Chih-Ting Lin ◽  
...  

Author(s):  
Negin Yousefpour ◽  
Steve Downie ◽  
Steve Walker ◽  
Nathan Perkins ◽  
Hristo Dikanski

Bridge scour is a challenge throughout the U.S.A. and other countries. Despite the scale of the issue, there is still a substantial lack of robust methods for scour prediction to support reliable, risk-based management and decision making. Throughout the past decade, the use of real-time scour monitoring systems has gained increasing interest among state departments of transportation across the U.S.A. This paper introduces three distinct methodologies for scour prediction using advanced artificial intelligence (AI)/machine learning (ML) techniques based on real-time scour monitoring data. Scour monitoring data included the riverbed and river stage elevation time series at bridge piers gathered from various sources. Deep learning algorithms showed promising in prediction of bed elevation and water level variations as early as a week in advance. Ensemble neural networks proved successful in the predicting the maximum upcoming scour depth, using the observed sensor data at the onset of a scour episode, and based on bridge pier, flow and riverbed characteristics. In addition, two of the common empirical scour models were calibrated based on the observed sensor data using the Bayesian inference method, showing significant improvement in prediction accuracy. Overall, this paper introduces a novel approach for scour risk management by integrating emerging AI/ML algorithms with real-time monitoring systems for early scour forecast.


2020 ◽  
Author(s):  
Manousos Valyrakis ◽  
Panagiotis Michalis ◽  
Yi Xu ◽  
Pablo Gaston Latessa

<p>Ageing infrastructure alongside with extreme climatic conditions pose a major threat for the sustainability of civil infrastructure systems with significant societal and economic impacts [1]. A main issue also arises from the fact that past and existing methods that incorporate the risk of climatic hazards into infrastructure design and assessment methods are based on historical records [2].</p><p>Major flood incidents are the factor of evolving geomorphological processes, which cause a drastic reduction in the safe capacity of structures (e.g. bridges, dams). Many efforts focused on the development and application of monitoring techniques to provide real-time assessment of geomorphological conditions around structural elements [1, 3, 4]. However, the current qualitative visual inspection practice cannot provide reliable assessment of geomorphological effects at bridges and other water infrastructure.</p><p>This work presents an analysis of the useful experience and lessons learnt from past monitoring efforts applied to assess geomorphological conditions at bridges and other types of water infrastructure. The main advantages and limitations of each monitoring method is summarized and compared, alongside with the key issues behind the failure of existing instrumentation to provide a solution. Finally, future directions on scour monitoring is presented focusing on latest advances in soil and remote sensing methods to provide modern and reliable alternatives for real-time monitoring and prediction [5, 6] of climatic hazards of infrastructure at risk.</p><p> </p><p>References</p><p>[1] Michalis, P., Konstantinidis, F. and Valyrakis, M. (2019) The road towards Civil Infrastructure 4.0 for proactive asset management of critical infrastructure systems. Proceedings of the 2nd International Conference on Natural Hazards & Infrastructure (ICONHIC2019), Chania, Greece, 23–26 June 2019.</p><p>[2] Pytharouli, S., Michalis, P. and Raftopoulos, S. (2019) From Theory to Field Evidence: Observations on the Evolution of the Settlements of an Earthfill Dam, over Long Time Scales. Infrastructures 2019, 4, 65.</p><p>[3] Koursari, E., Wallace, S., Valyrakis, M. and Michalis, P. (2019). The need for real time and robust sensing of infrastructure risk due to extreme hydrologic events, 2019 UK/ China Emerging Technologies (UCET), Glasgow, United Kingdom, 2019, pp. 1-3. doi: 10.1109/UCET.2019.8881865</p><p>[4] Michalis, P., Saafi, M. and M.D. Judd. (2012) Integrated Wireless Sensing Technology for Surveillance and Monitoring of Bridge Scour. Proceedings of the 6th International Conference on Scour and Erosion, France, Paris, pp. 395-402.</p><p>[5] Valyrakis, M., Diplas, P., and Dancey, C.L. (2011) Prediction of coarse particle movement with adaptive neuro-fuzzy inference systems, Hydrological Processes, 25 (22). pp. 3513-3524. ISSN 0885-6087, doi:10.1002/hyp.8228.</p><p>[6] Valyrakis, M., Michalis, P. and Zhang, H. (2015) A new system for bridge scour monitoring and prediction. Proceedings of the 36th IAHR World Congress, The Hague, the Netherlands, pp. 1-4.</p>


2021 ◽  
Author(s):  
Antonija Harasti ◽  
Gordon Gilja ◽  
Matej Varga ◽  
Robert Fliszar

<p>The objective of this paper is to present the ScourBuoy – concept for scour monitoring system. The ScourBuoy prototype is currently under development within the R3PEAT project (Remote Real-time Riprap Protection Erosion AssessmenT on large rivers), which aims to investigate scouring processes next to the riprap protection around bridge piers. ScourBuoy integrates commercially available technical devices into a functional system for scour monitoring during flood conditions. Sensors used are single beam echo sounder that collects depth and temperature data, multi-GNSS device for 3D positioning, compass for orientation respective to the True North and motion sensor for pitch and roll data. Combined output from the sensors allows user to calculate river depth and monitoring of scour development during floods. Advantage of ScourBuoy is adaptability to the field conditions, such as placement over the scour hole, as well as simpler deployment and reallocation in comparison to fix-mount solutions. ScourBuoy prototype was built using a common small-scale pipe float with an 80 mm inner diameter hole, which was used as a holder for an aluminium pipe. Aluminium pipe is used as a casing for echo sounder, positioned as downward-looking, so it stays submerged during deployment. The rest of the sensors are enclosed in the waterproof housing placed atop of the buoy, permanently above the waterline. The ScourBuoy will be a practical and affordable system which will allow researchers and engineers to collect measurements for scouring estimation. It will be used as a support system for rapid and timely decision making. Finally, developed Scour Buoy will present an alternative for real-time scour monitoring which allows responsive adapting to the specific conditions at the locations affected by scour.</p>


2013 ◽  
Author(s):  
Andriy Radchenko ◽  
David Pommerenke ◽  
Genda Chen ◽  
Pratik Maheshwari ◽  
Satyajeet Shinde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document