scholarly journals Effects of Ambient Temperature and Shaft Power Variations on Creep Life Consumption of Industrial Gas Turbine Blades

2018 ◽  
Vol 10 (03) ◽  
pp. 120-131
Author(s):  
E. G. Saturday ◽  
T. Isaiah
2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Ebigenibo Genuine Saturday ◽  
Thank-God Isaiah

The effect of engine degradation in the form of compressor fouling and compressor turbine degradation on the creep life consumption of the high-pressure (HP) turbine blades of an LM2500+ industrial gas turbine engine is investigated in this work. The degradations are flow capacity degradation and isentropic efficiency degradation. An engine model was created in Cranfield gas turbine performance and diagnostics software, pythia. Blade thermal and stress models were developed together with the Larson–Miller parameter (LMP) method for creep life analysis. The percentage decreases in creep life due to each effect were examined. For the engine considered, compressor degradation has more impact on engine creep life toward peak power operation, while HP turbine degradation has more impact on creep life at lower power levels. The results of this work will give engine operators an idea of how engine components creep life is consumed and make reasonable decisions concerning operating at part loads.


Author(s):  
Mattias Broddega˚rd ◽  
Christian Homma

Gas turbine blades are operating under very demanding conditions. In modern industrial gas turbines, the rotating blades and the guide vanes of the first stages are hollow to allow internal cooling. This means that there is a possibility of having crack initiation on the internal surface of the components. Due to the complex casting geometry, this type of defects is very difficult to detect with conventional nondestructive testing techniques such as ultrasonic and radiographic testing. Siemens has developed a new non-destructive testing technique based on acoustic thermography, SIEMAT. The test object is energized by an ultrasonic excitation device. Due to the vibrations, a very slight heating will develop at cracks in the test object. The local increase of temperature is captured by a highly sensitive IR camera. The SIEMAT technique is capable of detecting both surface-breaking and internal cracks, including cracks under coatings. The testing time is very short, and the IR sequences are recorded for subsequent analysis. A major advantage for service applications is that the technique is mostly sensitive to closed defects such as cracks, since open defects where no contact between the faces is present, for example pores and scratch marks, will not cause any heat generation. Siemens is currently implementing the SIEMAT technique for assessment of service-exposed turbine blades from medium size gas turbines, which are due for reconditioning. By being able to verify that no internal cracks are present, the reliability of the reconditioned blades will be increased. This paper describes the SIEMAT testing technique, and the results obtained when applied on service-exposed industrial gas turbine blades.


2016 ◽  
Vol 92 ◽  
pp. 262-271 ◽  
Author(s):  
D. Holländer ◽  
D. Kulawinski ◽  
A. Weidner ◽  
M. Thiele ◽  
H. Biermann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document