Computer Aided Design of Ni-Based Single Crystal Superalloy for Industrial Gas Turbine Blades

2015 ◽  
pp. 411-416
Author(s):  
Xianping Wei ◽  
Xiufang Gong ◽  
Gongxian Yang ◽  
Haiwei Wang ◽  
Haisong Li ◽  
...  
2021 ◽  
Vol 1032 ◽  
pp. 178-185
Author(s):  
Wan Qiu Ding

This report outlines a succinct analysis of the contemporary casting methods in single-crystal turbine blades. Furthermore, this paper also provides an examination of the solidification procedure in mixed turbine blades. The couple cooling and heating operation system was advanced to obtain identical thermal positions for single crystal (SC) solidification in the blade group, thereby significantly diminishing the associated flaws in the contemporary Bridgman process. The chemistry science of Nickel based alloys planed for single crystal (SC) gas turbine blades has been notably improved upon, especially when considering the initial production of alloys. The second and third production within the total operation has been enhanced by the introduction of rhenium (Re). Surged density, grain flaws, and microstructural stableness have presented themselves as significant issues within this process. Additionally, it is imperative to minimize the concentrations of the different alloying components.


2020 ◽  
Vol 9 (3) ◽  
pp. 3348-3356
Author(s):  
Eun-Hee Kim ◽  
Hye Yeong Park ◽  
Cho-long Lee ◽  
Jong Bum Park ◽  
SeungCheol Yang ◽  
...  

Author(s):  
Mattias Broddega˚rd ◽  
Christian Homma

Gas turbine blades are operating under very demanding conditions. In modern industrial gas turbines, the rotating blades and the guide vanes of the first stages are hollow to allow internal cooling. This means that there is a possibility of having crack initiation on the internal surface of the components. Due to the complex casting geometry, this type of defects is very difficult to detect with conventional nondestructive testing techniques such as ultrasonic and radiographic testing. Siemens has developed a new non-destructive testing technique based on acoustic thermography, SIEMAT. The test object is energized by an ultrasonic excitation device. Due to the vibrations, a very slight heating will develop at cracks in the test object. The local increase of temperature is captured by a highly sensitive IR camera. The SIEMAT technique is capable of detecting both surface-breaking and internal cracks, including cracks under coatings. The testing time is very short, and the IR sequences are recorded for subsequent analysis. A major advantage for service applications is that the technique is mostly sensitive to closed defects such as cracks, since open defects where no contact between the faces is present, for example pores and scratch marks, will not cause any heat generation. Siemens is currently implementing the SIEMAT technique for assessment of service-exposed turbine blades from medium size gas turbines, which are due for reconditioning. By being able to verify that no internal cracks are present, the reliability of the reconditioned blades will be increased. This paper describes the SIEMAT testing technique, and the results obtained when applied on service-exposed industrial gas turbine blades.


Author(s):  
Xu Zhang ◽  
David J. J. Toal ◽  
Neil W. Bressloff ◽  
Andy J. Keane ◽  
Frederic Witham ◽  
...  

The following paper presents an overview of the Prometheus design system and its applications to gas turbine combustor design. Unlike a traditional “optimizer-centric” method, Prometheus aims to reduce both the level of workflow complexity and rework by taking a more “geometry-centric” approach to design optimization by shifting the control of script generation away from the optimization program to the computer aided design (CAD) package. Prometheus therefore enables significant geometry changes to be automatically reflected in all subsequent scripts necessary for the analysis of a combustor. Prometheus’ current capabilities include automatic fluid volume generation and aero-thermal and thermo-acoustic network generation as well as automatic mesh and computational fluid dynamics (CFD) script generation.


2016 ◽  
Vol 92 ◽  
pp. 262-271 ◽  
Author(s):  
D. Holländer ◽  
D. Kulawinski ◽  
A. Weidner ◽  
M. Thiele ◽  
H. Biermann ◽  
...  

2019 ◽  
Vol 822 ◽  
pp. 481-488
Author(s):  
R.S. Korsmik ◽  
Gleb A. Turichin ◽  
G.G. Zadykyan ◽  
Andrey Igorevich Zhitenev

The article shows the results of multilayer laser cladding of heat-resistant single crystal nickel-based alloy ZhS32-VI (CSMX-4 analogue). The influence of the main technological parameters on geometry and microstructure formation of deposited beads was investigated. Based on obtained dependencies, the regression equations are compiled for describing the shape of bead and the ratio of directional and equiaxial crystallized sections. The obtained dependencies of regime parameters nomination allow restoring the gas-turbine blades by the method of laser cladding.


Sign in / Sign up

Export Citation Format

Share Document