scholarly journals Characterization of the Long-Term Interaction between Intracellular Reactive Oxygen Species and Oxidative DNA Damage in Murine Lin<sup>-</sup>/Sca-1<sup>+</sup> Cells Exposed to Ionizing Radiation

Author(s):  
Junya Ishikawa ◽  
Taro Morisaki
2020 ◽  
Author(s):  
Nealia C.M. House ◽  
Jacob V. Layer ◽  
Brendan D. Price

AbstractDNA repair requires reorganization of the local chromatin structure to facilitate access to and repair of the DNA. Studying DNA double-strand break (DSB) repair in specific chromatin domains has been aided by the use of sequence-specific endonucleases to generate targeted breaks. Here, we describe a new approach that combines KillerRed, a photosensitizer that generates reactive oxygen species (ROS) when exposed to light, and the genome-targeting properties of the CRISPR/Cas9 system. Fusing KillerRed to catalytically inactive Cas9 (dCas9) generates dCas9-KR, which can then be targeted to any desired genomic region with an appropriate guide RNA. Activation of dCas9-KR with green light generates a local increase in reactive oxygen species, resulting in “clustered” oxidative damage, including both DNA breaks and base damage. Activation of dCas9-KR rapidly (within minutes) increases both γH2AX and recruitment of the KU70/80 complex. Importantly, this damage is repaired within 10 minutes of termination of light exposure, indicating that the DNA damage generated by dCas9-KR is both rapid and transient. Further, repair is carried out exclusively through NHEJ, with no detectable contribution from HR-based mechanisms. Surprisingly, sequencing of repaired DNA damage regions did not reveal any increase in either mutations or INDELs in the targeted region, implying that NHEJ has high fidelity under the conditions of low level, limited damage. The dCas9-KR approach for creating targeted damage has significant advantages over the use of endonucleases, since the duration and intensity of DNA damage can be controlled in “real time” by controlling light exposure. In addition, unlike endonucleases that carry out multiple cut-repair cycles, dCas9-KR produces a single burst of damage, more closely resembling the type of damage experienced during acute exposure to reactive oxygen species or environmental toxins. dCas9-KR is a promising system to induce DNA damage and measure site-specific repair kinetics at clustered DNA lesions.


2017 ◽  
Author(s):  
Shubhra Rastogi ◽  
Amini Hwang ◽  
Josolyn Chan ◽  
Jean YJ Wang

SUMMARYIonizing radiation stimulates nuclear accumulation of Abl tyrosine kinase that is required for directly irradiated cells to produce microRNA-34c-containing extracellular vesicles, which transfer the microRNA into non-irradiated cells to induce reactive oxygen species and bystander DNA damage.ABSTRACTIonizing radiation (IR) activates an array of DNA damage response (DDR) that includes the induction of bystander effects (BE) in cells not targeted by radiation. How DDR pathways in irradiated cells stimulate BE in non-targeted cells is mostly unknown. We show here that extracellular vesicles from irradiated cells (EV-IR) induce reactive oxygen species (ROS) and DNA damage when internalized by un-irradiated cells. We found that EV-IR from Abl-NLS-mutated cells could not induce ROS or DNA damage, and restoration of nuclear Abl rescued those defects. Expanding a previous finding that Abl stimulates miR-34c expression, we show here that nuclear Abl also drives the vesicular secretion of miR-34c. Ectopic miR-34c expression, without irradiation, generated EV-miR-34c capable of inducing ROS and DNA damage. Furthermore, EV-IR from miR34-knockout cells could not induce ROS and raised γH2AX to lesser extent than EV-IR from miR34-wild type cells. These results establish a novel role for the Abl-miR-34c DDR pathway in stimulating radiation-induced bystander effects.


Sign in / Sign up

Export Citation Format

Share Document