scholarly journals Hydrodynamic Performance Analysis of the Ducted Propeller Based on the Combination of Multi-Block Hybrid Mesh and Reynolds Stress Model

2015 ◽  
Vol 03 (02) ◽  
pp. 67-74 ◽  
Author(s):  
Xueming He ◽  
Hecai Zhao ◽  
Xuedong Chen ◽  
Zailei Luo ◽  
Yannan Miao
2018 ◽  
Vol 11 (22) ◽  
pp. 41
Author(s):  
Mehdi Chamanara ◽  
Hassan Ghassemi ◽  
Manouchehr Fadavie ◽  
Mohammad Aref Ghassemi

In the present study, the effect of the duct angle and propeller location on the hydrodynamic characteristics of the ducted propeller using Reynolds-Averaged Navier Stokes (RANS) method is reported. A Kaplan type propeller is selected with a 19A duct. The ducted propeller is analyzed by three turbulence models including the k-ε standard, k-ω SST and Reynolds stress model (RSM). The numerical results are compared with experimental data. The effects of the duct angle and the location of the propeller inside the propeller are presented and discussed.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 91-98
Author(s):  
Jiang Luo ◽  
Budugur Lakshminarayana

Author(s):  
David Roos Launchbury ◽  
Luca Mangani ◽  
Ernesto Casartelli ◽  
Francesco Del Citto

Abstract In the industrial simulation of flow phenomena, turbulence modeling is of prime importance. Due to their low computational cost, Reynolds-averaged methods (RANS) are predominantly used for this purpose. However, eddy viscosity RANS models are often unable to adequately capture important flow physics, specifically when strongly anisotropic turbulence and vortex structures are present. In such cases the more costly 7-equation Reynolds stress models often lead to significantly better results. Unfortunately, these models are not widely used in the industry. The reason for this is not mainly the increased computational cost, but the stability and convergence issues such models usually exhibit. In this paper we present a robust implementation of a Reynolds stress model that is solved in a coupled manner, increasing stability and convergence speed significantly compared to segregated implementations. In addition, the decoupling of the velocity and Reynolds stress fields is addressed for the coupled equation formulation. A special wall function is presented that conserves the anisotropic properties of the model near the walls on coarser meshes. The presented Reynolds stress model is validated on a series of semi-academic test cases and then applied to two industrially relevant situations, namely the tip vortex of a NACA0012 profile and the Aachen Radiver radial compressor case.


Sign in / Sign up

Export Citation Format

Share Document