scholarly journals Optimization of Bleaching Process of Crude Palm Oil by Activated Plantain (<i>Musa paradisiaca</i>) Peel Ash Using Response Surface Methodology

2019 ◽  
Vol 08 (01) ◽  
pp. 38-46
Author(s):  
Wuraola Abake Raji ◽  
Rowland Ugochukwu Azike ◽  
Fredericks Wirsiy Ngubi
2021 ◽  
Vol 291 ◽  
pp. 123288
Author(s):  
Waqas Rafiq ◽  
Madzlan Napiah ◽  
Noor Zainab Habib ◽  
Muslich Hartadi Sutanto ◽  
Wesam Salah Alaloul ◽  
...  

2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Seyed Mohammad Safieddin Ardebili ◽  
Teymor Tavakoli Hashjin ◽  
Barat Ghobadian ◽  
Gholamhasan Najafi ◽  
Stefano Mantegna ◽  
...  

AbstractThis work investigates the effect of simultaneous ultrasound-microwave irradiation on palm oil transesterification and uncovers optimal operating conditions. Response surface methodology (RSM) has been used to analyze the influence of reaction conditions, including methanol/palm oil molar ratio, catalyst concentration, reaction temperature and irradiation time on biodiesel yield. RSM analyses indicate 136 s and 129 s as the optimal sonication and microwave irradiation times, respectively. Optimized parameters for full conversion (97.53%) are 1.09% catalyst concentration and a 7:3.1 methanol/oil molar ratio at 58.4°C. Simultaneous ultrasound-microwave irradiation dramatically accelerates the palm oil transesterification reaction. Pure biodiesel was obtained after only 2.2 min while the conventional method requires about 1 h.


2020 ◽  
Author(s):  
Zaber Ahmed ◽  
Mohd Suffian Yusoff ◽  
Nurul Hana Mokhtar Kamal ◽  
Hamidi Abdul Aziz

Abstract Malaysia is the 2nd largest in palm oil export, and after overcoming economic age (average 25 years), the palm oil trees entail to replace usually. Therefore, a massive quantity of palm oil trunk biomass, containing a significant amount of starch, is available as bio-waste annually. The efficient extraction of this starch (carbohydrate polymer) would be worthwhile concerning the environment, economy, conversion of biowaste to bioresources, and waste dumping challenges. Central composite design executed an experimental model design, evaluated the impacts of process variables and their interaction through response surface methodology to optimize the novel bisulfite steeping method for starch synthesis. Design-Expert software performed the data analysis. The developed quadratic models for four factors (Strength of Sodium bisulfite solution, steeping hour, mixing ratio with the bisulfite solution and ultra-pure water) and one response (%Yield), demonstrated that a significant starch yield (13.54%) is achievable utilizing 0.74% bisulfite solution, 5.6 steeping hours, for 1.6 and 0.6 mixing ratio with the bisulfite solution and ultra-pure water respectively. Experimental outcomes were quite consistent with the predicted model, which eventually sustains the significance of this method. Malvern Zetasizer test revealed a bimodal granular distribution for starch, with 7.15µm of hydrodynamic size. Starch morphology was determined by scanning electron microscopy. X-ray diffraction investigation exhibits an A-type model, specifying persistent characteristics of extracted starch.


Sign in / Sign up

Export Citation Format

Share Document