catalyst concentration
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 126)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Vol 9 ◽  
Author(s):  
Yanan Wang ◽  
Zhenxin Sun ◽  
Qingping Li ◽  
Xin Lv ◽  
Yang Ge

The methodology of using CO2 to replace CH4 to recover the natural gas hydrates (NGHs) is supposed to avoid geological disasters. However, the reaction path of the CH4–CO2 replacement method is too complex to give satisfactory replacement efficiency. Therefore, this study proposed a thermochemical reaction system that used the heat and the nitrogen released by the thermochemical reactions to recover NGHs. The performance of the thermochemical reaction system (NaNO2 and NH4Cl) regarding heat generation and gas production under low temperature (4°C) conditions was evaluated, and the feasibility of exploiting NGHs with an optimized formula of the thermochemical reaction system was also evaluated in this study. First, the effects of three catalysts (HCl, H₃PO₄, and NH2SO3H) were investigated at the same reactant concentration and catalyst concentration. It was confirmed that HCl as a catalyst can obtain better heat generation and gas production. Second, the effect of HCl concentration on the reaction was investigated under the same reactant concentration. The results showed that the higher the HCl concentration, the faster is the reaction rate. When the concentration of HCl was greater than 14 wt%, side reactions would occur to produce toxic gas; hence, 14 wt% was the optimal catalyst concentration for the reaction of NaNO2 and NH4Cl at low temperatures. Third, the heat generation and gas production of the thermochemical reaction systems were evaluated at different reactant concentrations (1, 2, 3, 4, 5, and 6 mol/L) at 14 wt% HCl concentration. It was found that the best reactant concentration was 5 mol/L. Finally, the feasibility of exploiting NGHs with the optimal system was analyzed from the perspectives of thermal decomposition and nitrogen replacement. The thermochemical reaction system provided by this study is possible to be applied to explore NGHs’ offshore.


2021 ◽  
Vol 37 (6) ◽  
pp. 1344-1349
Author(s):  
Aboulbaba Eladeb ◽  
Abdelkarim Aydi ◽  
Ibrahim Alenezi

The transesterification of waste cooking oils (WCO) with ethanol was investigated by means of potassium hydroxide (KOH) as catalyst. This work aimed to study the influences of catalyst concentration, temperature, ethanol to WCO molar ratio, reaction time, and stirring rate on the biodiesel conversion. Gas chromatography (GC) was used during the process of transesterification to determine the evolution of ethyl esters concentration with time. Biodiesel with maximum yield was obtained (92.5%) when 2 wt% KOH, temperature of 75°C, and ethanol/oil molar ratio of 11:1 were utilized.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4366
Author(s):  
Maris Puke ◽  
Daniela Godina ◽  
Mikelis Kirpluks ◽  
Prans Brazdausks ◽  
Janis Rizikovs

Latvia is a large manufacturer of plywood in Eastern Europe, with an annual production of 250,000 m3. In Latvia’s climatic conditions, birch (Betula pendula) is the main tree species that is mainly used for plywood production. A significant part of the processed wood makes up residues like veneer shorts, cores, and cut-offs (up to 30%), which have a high potential for value-added products. The aim of this research was to comprehensively characterize lignocellulosic (LC) biomass that was obtained after 2-furaldehyde production in terms of further valorization of this resource. The polymeric cellulose-enriched material can be used in the new biorefinery concept for the production of 2-furaldehyde, acetic acid, cellulose pulp, thermomechanical (TMP) and an alkaline peroxide mechanical (APMP) pulping process. In addition, we experimentally developed the best 2-furaldehyde production conditions to optimize the purity and usability of cellulose in the leftovers of the LC material. The best experimental results in terms of both 2-furaldehyde yield and the purity of residual lignocellulose were obtained if the catalyst concentration was 70%, the catalyst amount was 4 wt.%, the reaction temperature was 175 °C, and the treatment time was 60 min. After process optimization with DesignExpert11, we concluded that the best conditions for maximal glucose content (as cellulose fibers) was a catalyst concentration of 85%, a catalyst amount of 5 wt.%, a temperature of 164 °C, and a treatment time of 52 min.


Author(s):  
Yashvir Singh ◽  
Avani Kumar Upadhyay ◽  
Nishant Kumar Singh ◽  
Abhishek Sharma ◽  
Amneesh Singla ◽  
...  

In today’s scenario, biodiesel is one of the best alternatives to diesel for application as an eco-friendly product. In this work, jojoba oil is transesterified using solar energy for heating purposes. A solar parabolic trough collector having 6.4 m2 and 89% reflectivity is used to concentrate solar rays on a sealed container containing jojoba oil and catalyst-alcohol mixture, placed at the focus of the dish. The performance parameters like molar ratio (MR), reaction time (RT), and catalyst concentration (CC) are optimized. The result showed the highest yield of 89.67% at the optimum condition of molar ratio 9:1, reaction time 120 min, and catalyst concentration 0.8 wt.%. The highest contribution of 55.13% is measured for the molar ratio, followed by reaction time and catalyst concentration. Later, the interaction between MR, RT, and CC is established by response surface/contour plots; and their effects on biodiesel yield are discussed. Subsequently, the various physicochemical properties of raw jojoba oil and jojoba oil methyl ester are also measured and discussed as per ASTM standards. The unsaturated acid content in the biodiesel is also measured by gas chromatography. Hence, the blends of linseed oil with diesel fuel can be used in the IC engines with little or no modifications in engine parameters. Therefore, the use of solar energy could effectively reduce the use of electricity to cut down the processing cost in biodiesel production. Also, the methods should be established for methanol recovery from glycerine.


2021 ◽  
Vol 59 (5) ◽  
Author(s):  
Son Thanh Le ◽  
Dung Tran Nguyen ◽  
Huong Thu Tran ◽  
Dien Tran Nguyen ◽  
Uyen Phuong Dao

In this work, the combination of two advanced oxidation processes, electro-Fenton (hydroxyl radical ●OH generated by reactions on cathode) and anodic oxidation (●OH produced directly on anode), in the same reactor was studied to evaluate the treatment of methylene blue (MB) dye in aqueous solutions. This electrochemical system was equipped with a commercial carbon felt cathode (9.5cm 12cm), lead dioxide-coated titanium anode (10 12cm), direct current (DC) and continuously aerated. The effects of operating parameters such as pH, applied current (I), catalyst concentration ([Fe2+]) and MB concentration (C0) on MB removal efficiency were investigated through monitoring MB concentration at different times by spectrophotometric method. An optimal process was achieved at the condition of [Fe2+] = 0.1 mM; pH 3.0; [Na2SO4] = 0.05 M; i = 2.5 mA.cm-2 and after 60 minutes of electrolysis, 92.19% of MB was removed which was far higher than the figure obtained by using individually electro-Fenton (73.77%) or anodic oxidation (58.04%). These experimental results have demonstrated that the combination of electro-Fenton and anodic oxidation using Ti/PbO2 electrode is a prospective method for destruction of persistent dyes.


Author(s):  
Parvesh Kumar ◽  
◽  
M. Ramprasad ◽  
Sidharth ◽  
◽  
...  

The continuous fluctuation in the price of crude oil in the international market during the Covid-19 situation forced all the nation to work for self-sustainability in the energy sector. This pandemic condition also teaches all to utilize available sources effectively. So to deal with dual problems the optimized conversion of waste into an energy source is the most effective solution. In the present work waste cooking oil is converted into biodiesel and the production process is optimized using the response surface methodology technique. The central composite design approach of RSM is selected for optimization in the present work which provides a better result in limited experiments. The yield of waste cooking oil biodiesel is optimized through four parameters i.e. catalyst concentration, temp., time, and alcohol to oil molar ratio. The effect of all these parameters is analyzed exhaustively with the help of design expert software. The physicochemical properties of optimized WCOB are measured and the results are compared with petrodiesel fuel and normally prepared WCOB. It is found that the yield of WCOB is increased by more than 4% while prepared with optimized parameter values. The physicochemical properties of optimized WCOB were also found better as compared to normally prepared WCOB and comparable to petrodiesel. Hence it can be concluded that the optimization of biodiesel production not only improves the yield but also improves the quality of the biodiesel.


2021 ◽  
Vol 29 (4) ◽  
Author(s):  
Ratna Dewi Kusumaningtyas ◽  
Haniif Prasetiawan ◽  
Radenrara Dewi Artanti Putri ◽  
Bayu Triwibowo ◽  
Siti Choirunisa Furi Kurnita ◽  
...  

Nyamplung seed (Calophyllum inophyllum L.) oil is a prospective non-edible vegetable oil as biodiesel feedstock. However, it cannot be directly used in the alkaline catalysed transesterification reaction since it contains high free fatty acid (FFA) of 19.17%. The FFA content above 2% will cause saponification reaction, reducing the biodiesel yield. In this work, FFA removal was performed using sulfuric acid catalysed esterification to meet the maximum FFA amount of 2%. Experimental work and response surface methodology (RSM) analysis were conducted. The reaction was conducted at the fixed molar ratio of nyamplung seed oil and methanol of 1:30 and the reaction times of 120 minutes. The catalyst concentration and the reaction temperature were varied. The highest reaction conversion was 78.18%, and the FFA concentration was decreased to 4.01% at the temperature of 60℃ and reaction time of 120 minutes. The polynomial model analysis on RSM demonstrated that the quadratic model was the most suitable FFA conversion optimisation. The RSM analysis exhibited the optimum FFA conversion of 78.27% and the FFA content of 4%, attained at the reaction temperature, catalyst concentration, and reaction time of 59.09℃, 1.98% g/g nyamplung seed oil, and 119.95 minutes, respectively. Extrapolation using RSM predicted that the targeted FFA content of 2% could be obtained at the temperature, catalyst concentration, and reaction time of 58.97℃, 3%, and 194.9 minutes, respectively, with a fixed molar ratio of oil to methanol of 1:30. The results disclosed that RSM is an appropriate statistical method for optimising the process variable in the esterification reaction to obtain the targeted value of FFA.


Author(s):  
Mahfud Mahfud ◽  
Ansori Ansori

Energy demand is currently increasing in line with technological and economic developments, but not accompanied by an increase in energy reserves. So we need another alternative energy that can be renewed, namely biodiesel. Biodiesel has been produced commercially through the transesterification from vegetable oil with methanol using catalyst that produces esters and glycerol. The formation of glycerol which is by-product can reduce its economic value, so it needs to be done the separation process. Therefore, a new route is proposed in this study, namely the interesterification reaction (non-alcoholic route) using methyl acetate as an alkyl group supplier and potassium methoxide catalyst. The superiority of the product produced by the interesterification reaction is biodiesel with triacetin byproducts which have an economical value and can be added to biodiesel formulations because of their solubility so that no side product separation process is needed. To increase the yield of biodiesel and the interesterification rate, the ultrasound method was used in this study. To optimize the factors that affect the interesterification reaction (molar ratio of methyl acetate to oil, catalyst concentration, temperature, and interesterification time), the Box-Behnken design (BBD) is used. Optimal operating conditions to produce the yields of biodiesel of 98.64 % are at molar ratio of methyl acetate to palm oil of 18.74, catalyst concentration of 1.24 %, temperature of 57.84 °C, and interesterification time of 12.69 minutes.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012024
Author(s):  
M Soh ◽  
J J Chew ◽  
J Sunarso

Abstract Oil palm trunks (OPT) are attractive bio-fuel sources given their abundant availability. Nonetheless, the inherent properties of these biomass can lead to their inefficient use as bio-fuel directly. This work utilizes four organic acids (i.e., acetic, formic, levulinic, and citric acid) as catalyst in wet torrefaction to enhance the fuel properties of OPT hydrochar. In this study, the effects of different catalysts, catalyst concentrations, and residence times on the fuel properties of OPT hydrochar are analyzed. To study the effect of residence time, 0.2M of acid concentration was used for all four acids at 220 °C for 3 hr and 24 hr. Meanwhile, study on the effect of catalyst concentration was performed at 220 °C for 24 hr at 0.2M and 1.0M for all four acids. Increasing the residence time decreased the solid yield of OPT hydrochar treated in deionized water, acetic, formic, and levulinic acid, while wet torrefaction in citric acid results in close solid yield value in both residence time. The energy yield was observed to decrease in all liquid medium with increasing residence time except for formic acid and citric acid. On the other hand, increasing the acid concentration increased the OPT hydrochar solid yield in all acids except formic acid and the highest energy yield of 77.08% was obtained from wet torrefaction in 1.0M of citric acid at 220 °C for 24 hr. In summary, citric acid is an environmentally friendly acid to be used as catalyst to enhance the fuel properties of OPT hydrochar. Further study on the reaction mechanisms that governs such fuel properties enhancement with citric acid is warranted.


Author(s):  
Bruna Ricetti Margarida ◽  
Luana I. Flores ◽  
Luiz Fernando De Lima Luz Jr. ◽  
Marcelo Kaminski Lenzi

Biodiesel production from residual sources is gaining considerable attention nowadays. Consequently, many different studies with in-depth analysis concerning the influence of the transesterification reaction conditions are available in the literature. However, further evaluation of the esterification of fatty acids in the biodiesel industry is still needed. In this study, different parameters influencing the esterification reaction behavior using ethanol as the alcohol and lauric acid as the FFA are analyzed through factorial design and ANOVA methodologies to verify which ones are significant in the reaction. In total, four parameters were evaluated: temperature, catalyst concentration, ethanol/FFA ratio, and ethanol/water ratio. The temperature and ethanol/water ratio had a major influence on the reaction, as increasing these parameters greatly improved reaction conversion. It was also verified that using hydrous ethanol in the esterification reaction is possible in some conditions.


Sign in / Sign up

Export Citation Format

Share Document