scholarly journals A Rare Case of Coronary Cameral Fistula from Left Circumflex Artery Draining into the Left Ventricular Apex Presenting as Angina Pectoris: A Case Report

2016 ◽  
Vol 06 (07) ◽  
pp. 197-201
Author(s):  
Manish Pendse ◽  
Nilesh Walke ◽  
Monika Jawanjal ◽  
Ghanashyam Kane
Author(s):  
Pawan Kumar Garg ◽  
Pushpinder Singh Khera ◽  
Swarnava Tarafdar ◽  
Binit Sureka ◽  
Surender Deora

2021 ◽  
Vol 8 ◽  
Author(s):  
Badreyah Aldauig ◽  
Mohammed El-Sabbah ◽  
Mirvat Alasnag

The role of cardiac computed tomography in the evaluation of patients for transcatheter aortic valve implantation is well-established. However, its role in the evaluation of anomalous vessels in the pre-procedure planning, intra-procedural fusion imaging and post-procedure assessment of vessel patency is not yet defined. This case report illustrates the utility of cardiac CT throughout the management of complex structural interventions. Here, we describe an anomalous left coronary artery where the course of the anomalous vessel and its proximity to the aortic valve annulus is defined allowing the selection of the most appropriate balloon expandable valve with a planned deployment. Upon follow up, patency of this anomalous vessel is ascertained using CT as well as the transcatheter valve function and leaflet thickening.


2021 ◽  
Vol 16 (8) ◽  
pp. 1985-1987
Author(s):  
Kaoutar Imrani ◽  
Sanae Amalik ◽  
Nabil Moatassim Billah ◽  
Ittimade Nassar

Author(s):  
Emine Acar ◽  
Ayşegül Aksu ◽  
Gökmen Akkaya ◽  
Gamze Çapa Kaya

Objective: This study evaluated how much of the myocardium was hibernating in patients with left ventricle dysfunction and/or comorbidities who planned to undergo either surgical or interventional revascularization. Furthermore, this study also identified which irrigation areas of the coronary arteries presented more scar and hibernating tissue. Methods: At rest, Tc-99m MIBI SPECT and cardiac F-18 FDG PET/CT images collected between March 2009 and September 2016 from 65 patients (55 men, 10 women, mean age 64±12) were retrospectively analyzed in order to evaluate myocardial viability. The areas with perfusion defects that were considered metabolic were accepted as hibernating myocardium, whereas areas with perfusion defects that were considered non-metabolic were accepted as scar tissue. Results: Perfusion defects were observed in 26% of myocardium, on average 48% were associated with hibernation whereas other 52% were scar tissue. In the remaining Tc-99m MIBI images, perfusion defects were observed in the following areas in the left anterior descending artery (LAD; 31%), in the right coronary artery (RCA; 23%) and in the Left Circumflex Artery (LCx; 19%) irrigation areas. Hibernation areas were localized within the LAD (46%), LCx (54%), and RCA (64%) irrigation areas. Scar tissue was also localized within the LAD (54%), LCx (46%), and RCA (36%) irrigation areas. Conclusion: Perfusion defects are thought to be the result of half hibernating tissue and half scar tissue. The majority of perfusion defects was observed in the LAD irrigation area, whereas hibernation was most often observed in the RCA irrigation area. The scar tissue development was more common in the LAD irrigation zone.


Author(s):  
Marcin Kuniewicz ◽  
Artur Baszko ◽  
Mateusz Holda ◽  
Dyjhana Ali ◽  
Grzegorz Karkowski ◽  
...  

The left ventricular summit (LVS) is a triangular area located at the most superior portion of the left epicardial ventricular region, surrounded by the two branches of the left coronary artery: the left anterior interventricular artery and the left circumflex artery. The triangle is bounded by the apex, septal and mitral margins and base. This review aims to provide a systematic and comprehensive anatomical description and proper terminology in the LVS region that may facilitate exchanging information among anatomists and electrophysiologists, increasing knowledge of this cardiac region. We postulate that the most dominant septal perforator (not the first septal perforator) should characterize the LVS definition. Abundant epicardial adipose tissue overlying the LVS myocardium may affect arrhythmogenic processes and electrophysiological procedures within the LVS region. The LVS is divided into two clinically significant regions: accessible and inaccessible areas. Rich arterial and venous coronary vasculature and a relatively dense network of cardiac autonomic nerve fibers are present within the LVS boundaries. Although the approach to the LVS may be challenging, it can be executed indirectly using the surrounding structures. Delivery of the proper radiofrequency energy to the arrhythmia source, avoiding coronary artery damage at the same time, may be a challenge. Therefore, coronary angiography or cardiac computed tomography imaging is strongly recommended before any procedure within the LVS region. Further research on LVS morphology and physiology should increase the safety and effectiveness of invasive electrophysiological procedures performed within this region of the human heart. Published in Diagnostics: https://doi.org/10.3390/diagnostics11081423


Author(s):  
Mahmoud Abdelnaby ◽  
Abdallah Almaghraby ◽  
Yehia Saleh ◽  
Muhammad Abdul Haleem ◽  
Ashraf ElAmin ◽  
...  

2019 ◽  
Vol 37 (1) ◽  
pp. 139-141 ◽  
Author(s):  
Mirei Nagai ◽  
Satoshi Kurokawa ◽  
Makoto Ozaki ◽  
Minoru Nomura

1985 ◽  
Vol 59 (2) ◽  
pp. 392-400 ◽  
Author(s):  
J. C. Longhurst ◽  
S. Motohara ◽  
J. M. Atkins ◽  
G. A. Ordway

Formation of extensive collateral vessels after chronic constriction of a coronary artery in dogs can provide for similar increases in blood flow to native and collateralized regions of myocardium during exertion. Previous investigations have not compared myocardial blood flow and cardiac functional responses during exercise in constricted and nonconstricted (sham) animals. Thus we evaluated left ventricular performance and myocardial blood flow at rest and during mild, moderate, and severe exertion in sham-operated dogs and in dogs 2–3 mo after placement of an Ameroid occluder around the proximal left circumflex artery. Changes in double product, maximal left ventricular dP/dt, and pressure-work index were similar in both groups for each level of exertion. Despite similar increases in estimated myocardial O2 demand and similar diastolic perfusion pressures, average transmural myocardial blood flow increased less in the constrictor animals, particularly during severe exercise (2.74 +/- 0.22 vs. 1.45 +/- 0.29 ml X min-1 X g-1). The smaller increases in blood flow occurred equally in native and collateralized regions as well as in the papillary muscles and boundary areas between the native and collateralized regions. The differences in flow in the native and collateralized regions were uniform across the wall of the myocardium. We also observed smaller increases in stroke volume and cardiac output in the constrictor group, disparities which increased with increasing exertion (stroke volume, severe exercise = 0.92 +/- 0.13 vs. 0.53 +/- 0.09 ml/kg). We postulate that myocardial active hyperemia is limited either because the coronary vessels remaining after chronic circumflex occlusion cannot dilate sufficiently or that there is inappropriate active vasoconstriction during severe exertion.


Sign in / Sign up

Export Citation Format

Share Document