scholarly journals MKK7-mediated phosphorylation of JNKs regulates the proliferation and apoptosis of human spermatogonial stem cells

2021 ◽  
Vol 13 (11) ◽  
pp. 1797-1812
Author(s):  
Zeng-Hui Huang ◽  
Chuan Huang ◽  
Xi-Ren Ji ◽  
Wen-Jun Zhou ◽  
Xue-Feng Luo ◽  
...  
2021 ◽  
Vol 13 (11) ◽  
pp. 1798-1813
Author(s):  
Zeng-Hui Huang ◽  
Chuan Huang ◽  
Xi-Ren Ji ◽  
Wen-Jun Zhou ◽  
Xue-Feng Luo ◽  
...  

2020 ◽  
Vol 215 ◽  
pp. 106330 ◽  
Author(s):  
Lei Shi ◽  
Yunli Duan ◽  
Xiaolei Yao ◽  
Ruigao Song ◽  
Youshe Ren

Author(s):  
Dai Zhou ◽  
Jingyu Fan ◽  
Zhizhong Liu ◽  
Ruiling Tang ◽  
Xingming Wang ◽  
...  

Spermatogonial stem cells (SSCs) are the initial cells for the spermatogenesis. Although much progress has been made on uncovering a number of modulators for the SSC fate decisions in rodents, the genes mediating human SSCs remain largely unclear. Here we report, for the first time, that TCF3, a member of the basic helix-loop-helix family of transcriptional modulator proteins, can stimulate proliferation and suppress the apoptosis of human SSCs through targeting podocalyxin-like protein (PODXL). TCF3 was expressed primarily in GFRA1-positive spermatogonia, and EGF (epidermal growth factor) elevated TCF3 expression level. Notably, TCF3 enhanced the growth and DNA synthesis of human SSCs, whereas it repressed the apoptosis of human SSCs. RNA sequencing and chromatin immunoprecipitation (ChIP) assays revealed that TCF3 protein regulated the transcription of several genes, including WNT2B, TGFB3, CCN4, MEGF6, and PODXL, while PODXL silencing compromised the stem cell activity of SSCs. Moreover, the level of TCF3 protein was remarkably lower in patients with spermatogenesis failure when compared to individuals with obstructive azoospermia with normal spermatogenesis. Collectively, these results implicate that TCF3 modulates human SSC proliferation and apoptosis through PODXL. This study is of great significance since it would provide a novel molecular mechanism underlying the fate determinations of human SSCs and it could offer new targets for gene therapy of male infertility.


2019 ◽  
Vol 14 ◽  
pp. 90-100 ◽  
Author(s):  
Hongyong Fu ◽  
Fan Zhou ◽  
Qingqing Yuan ◽  
Wenhui Zhang ◽  
Qianqian Qiu ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 1800-1815
Author(s):  
Zeng-Hui Huang ◽  
Chuan Huang ◽  
Xi-Ren Ji ◽  
Wen-Jun Zhou ◽  
Xue-Feng Luo ◽  
...  

Aging ◽  
2019 ◽  
Vol 11 (24) ◽  
pp. 12581-12599
Author(s):  
Qianqian Qiu ◽  
Xing Yu ◽  
Chencheng Yao ◽  
Yujun Hao ◽  
Liqing Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document