proliferation and apoptosis
Recently Published Documents





2022 ◽  
Vol 12 (4) ◽  
pp. 695-700
Xiumei He ◽  
Xiong Zhou ◽  
Yueyue Feng

This study intends to identify the expression profiles of micoRNAs during the recovery of damaged corneal epithelium induced by BMSCs. Differential expressions of miRNA after damage of corneal epithelium stimulated by BMSCs were analyzed based on micro-array and validated by qRT-PCR. The miRNA’s effect on cell proliferative and apoptotic activity was evaluated through transfection of plasmid with over presentation of miRNA and inhibitor of miRNA. miR-339 was significantly down-regulated in the process of recovery of the damaged corneal epithelium induced by BMSCs. Importin 13 and EGF expression was reduced after transfection of plasmid with over presentation of miR-339, which were reversed by transfection of the inhibitor of miR-339. Importin 13 was a target of miR-339. The cell proliferation and apoptosis could be restrained by miR-339 through regulation of the expression of Importin 13. In conclusion, the damaged corneal epithelium induced by BMSCs could be recovered by miR-339 through restraining Importin 13 expression, indicating that it might be a novel target for amelioration of corneal epithelium damage.

2022 ◽  
Vol 12 (5) ◽  
pp. 996-1001
Neng Jiang ◽  
Shunfu Zhu ◽  
Jianjun Zhu

Objective: Suppressors of cytokine signaling 3 (SOCS3) negatively regulates JAK-STAT signaling. Bioinformatics analysis showed a targeted relationship between miR-221 and SOCS3 mRNA 3′-UTR. This study investigated whether miR-221 regulates SOCS3 expression and affects thyroid cancer cells. Methods: Dual-luciferase reporter gene experiments verified the relationship between miR-221 and SOCS3. The tumor tissues and adjacent tissues of patients with thyroid cancer were collected to detect miR-221 and SOCS3 level. Thyroid cancer cell line KTC-1 cells were assigned into miR-NC group and miR-221 inhibitor group followed by analysis of SOCS3, p-JAK2, and p-STAT3 level by Real-time PCR, cell apoptosis and cell proliferation by flow cytometry and cell invasion by Transwell assay. Results: Compared with adjacent tissues, miR-221 level in tumor tissues was increased, and SCOS3 mRNA level was decreased. There was a targeted relationship between miR-221 and SOCS3 mRNA. MiR-221 level in KTC-1 and TPC-1 cells was increased, while SOCS3 mRNA level was decreased. MiR-221 inhibitor can significantly upregulate SOCS3 mRNA and protein in KTC-1 cells, reduce the expression of p-JAK2, p-STAT3 protein, increase cell apoptosis, and reduce cell proliferation and invasion. Conclusion: The increased miR-221 and decreased SOCS3 expression are related to thyroid cancer pathogenesis. MiR-221 can inhibit the expression of SOCS3, affect JAK-STAT signaling activity, and regulate the proliferation and apoptosis of thyroid cancer cells.

2022 ◽  
Vol 12 (2) ◽  
pp. 306-315
Jie Song ◽  
Cheng Chen ◽  
Hui Zhang

Osteoarthritis (OA) is a chronic and inflammatory disease, leading to pain or even disability in severe cases. LncRNA PCGEM1 (PCGEM1) is reported to be dysregulated, serving as critical regulators in various human diseases, including OA. However, the biological role of PCGEM1 and its underlying mechanisms during OA remained unclear. In the present study, CHON-001 cells were exposed to interleukin (IL)-1β to construct the OA cell model. Expression of PCGEM1 and miR-152-3p in cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Corresponding commercial kits were used to measure the expressions of lactate dehydrogenase (LDH), inter-leukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Protein levels of apoptosis-related proteins, cleaved-Caspase3 and Caspase3, were detected by Western blotting. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) tetrazolium (MTT) and flow cytometry assays were utilized for the determination of cell proliferation and apoptosis. The association between PCGEN1 and miR-152-3p was confirmed by a dual-luciferase reporter assay. From the results, PCGEM1 expression was significantly increased while miR-152-3p was inhibited in CHON-001 cells after IL-1β treatment. In addition, silencing of PCGEM1 could promote proliferation, inhibit the apoptosis, suppress LDH level and alleviate inflammation response caused by IL-1β in CHON-001 cells by sponging miR-152-3p. In a word, PCGEM1 down-regulation suppressed OA progression by the regulation of miR-152-3p expression, functioning as a potential therapeutic target for OA clinical treatment.

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 294
Annibale Alessandro Puca ◽  
Valentina Lopardo ◽  
Francesco Montella ◽  
Paola Di Pietro ◽  
Daniela Cesselli ◽  

Glioblastoma (GBM) is the most common primary brain cancer with the median age at diagnosis around 64 years, thus pointing to aging as an important risk factor. Indeed, aging, by increasing the senescence burden, is configured as a negative prognostic factor for GBM stage. Furthermore, several anti-GBM therapies exist, such as temozolomide (TMZ) and etoposide (ETP), that unfortunately trigger senescence and the secretion of proinflammatory senescence-associated secretory phenotype (SASP) factors that are responsible for the improper burst of (i) tumorigenesis, (ii) cancer metastasis, (iii) immunosuppression, and (iv) tissue dysfunction. Thus, adjuvant therapies that limit senescence are urgently needed. The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) gene previously demonstrated a modulatory activity in restoring age-related immune dysfunction and in balancing the low-grade inflammatory status of elderly people. Based on the above findings, we tested LAV-BPIFB4 senotherapeutic effects on senescent glioblastoma U87-MG cells and on T cells from GBM patients. We interrogated SA-β-gal and HLA-E senescence markers, SASP factors, and proliferation and apoptosis assays. The results highlighted a LAV-BPIFB4 remodeling of the senescent phenotype of GBM cells, enhancement of their sensitivity to temozolomide and a selective reduction of the T cells’ senescence from GBM patients. Overall, these findings candidate LAV-BPIFB4 as an adjuvant therapy for GBM.

2022 ◽  
Vol 11 ◽  
Soudeh Ghafouri-Fard ◽  
Tayyebeh Khoshbakht ◽  
Mohammad Taheri ◽  
Seyedpouzhia Shojaei

Sprouty RTK signaling antagonist 4-intronic transcript 1 (SPRY4-IT1) is a long non-coding RNA (lncRNA) encoded by a gene located on 5q31.3. This lncRNA has a possible role in the regulation of cell growth, proliferation, and apoptosis. Moreover, since SPRY4-IT1 controls levels of lipin 2, it is also involved in the biosynthesis of lipids. During the process of biogenesis, SPRY4-IT1 is produced as a primary transcript which is then cleaved to generate a mature transcript which is localized in the cytoplasm. SPRY4-IT1 has oncogenic roles in diverse tissues. A possible route of participation of SPRY4-IT1 in the carcinogenesis is through sequestering miRNAs such as miR-101-3p, miR‐6882‐3p and miR-22-3p. The sponging effect of SPRY4-IT1 on miR-101 has been verified in colorectal cancer, osteosarcoma, cervical cancer, bladder cancer, gastric cancer and cholangiocarcinoma. SPRY4-IT1 has functional interactions with HIF-1α, NF-κB/p65, AMPK, ZEB1, MAPK and PI3K/Akt signaling. We explain the role of SPRY4-IT1 in the carcinogenesis according to evidence obtained from cell lines, xenograft models and clinical studies.

2022 ◽  
Vol 17 (1) ◽  
Yeling Liu ◽  
Jingrui Chen ◽  
Lizhong Zhou ◽  
Chunhua Yin

Abstract Background Cervical cancer (CC) is one of the most common malignancies affecting female worldwide. Long non-coding RNAs (lncRNAs) are increasingly indicated as crucial participants and promising therapeutic targets in human cancers. The main objective of this study was to explore the functions and mechanism of LINC00885 in CC. Methods RT-qPCR and western blot were used to detect RNA and protein levels. Functional and mechanism assays were respectively done for the analysis of cell behaviors and molecular interplays. Results Long intergenic non-coding RNA 885 (LINC00885) was discovered to be upregulated in CC tissues and cell lines through bioinformatics analysis and RT-qPCR. Overexpression of LINC00885 promoted proliferation and inhibited apoptosis, whereas its silence exerted opposite effects. The cytoplasmic localization of LINC00885 was ascertained and furthermore, LINC00885 competitively bound with miR-3150b-3p to upregulate BAZ2A expression in CC cells. Rescue assays confirmed that LINC00885 regulated CC proliferation and apoptosis through miR-3150b-3p/BAZ2A axis. Finally, we confirmed that LINC00885 aggravated tumor growth through animal experiments. Conclusions LINC00885 exerted oncogenic function in CC via regulating miR-3150b-3p/BAZ2A axis. These findings suggested LINC00885 might serve as a potential promising therapeutic target for CC patients.

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Yunxiang Gong ◽  
Degang Wang ◽  
Wengang Wang

Objective. In this paper, we study the role of the VHL gene in regulating the proliferation and apoptosis of renal cell carcinoma, as well as the safety and transfection efficiency of ultrasound microbubble gene transfection technology. Method. We use kidney cancer cell lines as an in vitro research object and apply ultrasound microbubble gene transfection technology to transfect the VHL gene into kidney cancer cell line (786-0). The proliferation and apoptosis of cells were measured to clarify the inhibitory effect of the VHL gene in renal cell carcinoma. After that, pEGFP-VHL was transfected using ultrasonic microbubble and liposome gene transfection techniques, respectively, and the transfection efficiency was measured by immunofluorescence. Results. Compared with untreated and 786-0 cells that are transfected with empty vector, the expression level of VHL gene mRNA in 786-0 cells that are transfected with pcDNA3.1-VHL was significantly increased, and the cell growth inhibition rate was significantly higher. The rate of apoptosis increased significantly. Transfection efficiency of the pEGFP-VHL gene after transfection of 786-0 cells for 48 h: control group 0, liposome group ( 35.55 ± 2.77 ) %, ultrasound microbubble group ( 18.27 ± 2.83 ) %, and two transfection methods on cells. There is no significant difference in the impact of vitality. Conclusion. VHL gene expression can significantly inhibit the proliferation ability of renal cancer cell line 786-0 and promote its apoptosis. VHL gene is a potential target for gene therapy of kidney cancer.

2022 ◽  
Vol 11 ◽  
Jing Xu ◽  
Xin-Yuan Liu ◽  
Qi Zhang ◽  
Hua Liu ◽  
Peng Zhang ◽  

Long non-coding RNAs (ncRNAs), which do not encode proteins, regulate cell proliferation, tumor angiogenesis, and metastasis and are closely associated with the development, progression, and metastasis of many cancers. Tumor-associated macrophages (TAMs) in the tumor microenvironment play an important role in cancer progression. The Hippo signaling pathway regulates cell proliferation and apoptosis, maintains tissue and organ size, and homeostasis of the internal environment of organisms. Abnormal expression of Yes-associated protein (YAP), the Hippo signaling pathway key component, is widely observed in various malignancies. Further, TAM, lncRNA, and YAP are currently valuable targets for cancer immunotherapy. In this review, we have logically summarized recent studies, clarified the close association between the three factors and tumorigenesis, and analyzed the outlook of tumor immunotherapy.

Sign in / Sign up

Export Citation Format

Share Document