cyclin a2
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 32)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Shahan Mamoor

Women diagnosed with triple negative breast cancer can benefit neither from endocrine therapy nor from HER2-targeted therapies (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding cyclin A2, CCNA2, when comparing the tumor cells of patients with triple negative breast cancer to normal mammary ductal cells (2). CCNA2 was also differentially expressed in bulk tumor in human breast cancer (3). CCNA2 mRNA was present at significantly increased quantities in TNBC tumor cells relative to normal mammary ductal cells. Analysis of human survival data revealed that expression of CCNA2 in primary tumors of the breast was correlated with overall survival in patients with basal-like type cancer, while within triple negative breast cancer, primary tumor expression of CCNA2 was correlated with overall survival in patients with basal-like 1, basal-like 2, and mesenchymal subtype disease. CCNA2 may be of relevance to initiation, maintenance or progression of triple negative breast cancers.


2021 ◽  
Vol 22 (19) ◽  
pp. 10777
Author(s):  
Donghee Kim ◽  
Hyo-Jin Kim ◽  
Jin-Ok Baek ◽  
Joo-Young Roh ◽  
Hee-Sook Jun

Psoriasis is a chronic inflammatory skin disease. Recently, lysophosphatidic acid (LPA)/LPAR5 signaling has been reported to be involved in both NLRP3 inflammasome activation in macrophages and keratinocyte activation to produce inflammatory cytokines, contributing to psoriasis pathogenesis. However, the effect and molecular mechanisms of LPA/LPAR signaling in keratinocyte proliferation in psoriasis remain unclear. In this study, we investigated the effects of LPAR1/3 inhibition on imiquimod (IMQ)-induced psoriasis-like mice. Treatment with the LPAR1/3 antagonist, ki16425, alleviated skin symptoms in IMQ-induced psoriasis-like mouse models and decreased keratinocyte proliferation in the lesion. It also decreased LPA-induced cell proliferation and cell cycle progression via increased cyclin A2, cyclin D1, cyclin-dependent kinase (CDK)2, and CDK4 expression and decreased p27Kip1 expression in HaCaT cells. LPAR1 knockdown in HaCaT cells reduced LPA-induced proliferation, suppressed cyclin A2 and CDK2 expression, and restored p27Kip1 expression. LPA increased Rho-associated protein kinase 2 (ROCK2) expression and PI3K/AKT activation; moreover, the pharmacological inhibition of ROCK2 and PI3K/AKT signaling suppressed LPA-induced cell cycle progression. In conclusion, we demonstrated that LPAR1/3 antagonist alleviates IMQ-induced psoriasis-like symptoms in mice, and in particular, LPAR1 signaling is involved in cell cycle progression via ROCK2/PI3K/AKT pathways in keratinocytes.


2021 ◽  
Vol 21 ◽  
Author(s):  
Xiaohua Zhang ◽  
Tianying Zhang ◽  
Xiaojuan Han ◽  
Zhongying Qiu ◽  
Jianghong Cheng ◽  
...  

Background: Glioma is the most common intracranial primary tumour of adult humans, and its pathological mechanism and molecular characteristics are under investigation. CDK-associated cullin 1 (CACUL1) has been shown to regulate colorectal carcinoma, lung cancer and gastric cancer development. Objective: This study aims to explore the role of CACUL1 in the pathogenesis of human glioma. Methods: CACUL1 levels in human glioma tissue microarrays were detected by immunohistochemistry analysis. Two glioblastoma cell lines, namely, U87 and U251, were transfected with CACUL1 siRNA, and cell proliferation, cell cycle, cell apoptosis and regulating molecules including cyclin E1, cyclin A2, CDK2, p21, Bcl2 and Bax were assessed by CCK8, flow cytometry and Western blot. Results: CACUL1 expression in glioma tissue was significantly higher than that in normal brain tissue. CACUL1 knockdown impeded cell proliferation, induced cell apoptosis and caused G1/S transition arrest in glioblastoma cells. The cell cycle-related proteins CDK2, cyclin E1 and cyclin A2 were dramatically decreased in the CACUL1 siRNA group compared to the non-targeting siRNA group in both U87 and U251 cells, while the CDK inhibitory protein p21 was increased in U87 cells. Additionally, the Bcl-2/Bax ratio was significantly decreased. Conclusion: CACUL1 can promote cell proliferation and suppress apoptosis of glioma cells and might serve as a potential oncogene for gliomas.


2021 ◽  
Vol Volume 14 ◽  
pp. 3443-3454
Author(s):  
Haoran Wang ◽  
Zixiang Liu ◽  
Peng Wu ◽  
Hanqing Wang ◽  
Weiwei Ren

2021 ◽  
Author(s):  
Lamuk Zaveri ◽  
Jyotsna Dhawan

AbstractDuring reprogramming of somatic cells, heightened proliferation is one of the earliest changes observed. While other early events such as mesenchymal-to-epithelial transition have been well studied, the mechanisms by which the cell cycle switches from a slow cycling state to a faster cycling state are still incompletely understood. To investigate the role of Oct-3/4 in this early feature of reprogramming, we created a 4-Hydroxytamoxifen dependent Oct-3/4 Estrogen Receptor fusion (OctER). We show that OctER can substitute for Oct-3/4 to reprogram mouse embryonic fibroblasts to induced pluripotent stem cells. While over-expression of OctER or Klf4 individually did not affect cell proliferation, in combination, these factors hasten the cell cycle, in a tamoxifen dose-dependent manner, supporting a key role for OctER. Oct-3/4 + Klf4 increased proliferation by enhancing expression of Cyclin A2. We verified occupancy of endogenous Oct-3/4 and Klf4 at bioinformatically identified binding sites in the Cyclin A2 promoter in mouse embryonic stem cells (mESC). Using inducible OctER along with Klf4, we show dose-dependent induction of Cyclin A2 promoter-reporter activity and mRNA levels. Taken together, our results provide further evidence of the interdependence of pluripotency and the rapid cell cycle seen in mESC, and identify CyclinA2 as a key early target.


2021 ◽  
Vol 4 (3) ◽  
pp. e202000980
Author(s):  
Helena Silva Cascales ◽  
Kamila Burdova ◽  
Anna Middleton ◽  
Vladislav Kuzin ◽  
Erik Müllers ◽  
...  

Cyclin A2 is a key regulator of the cell cycle, implicated both in DNA replication and mitotic entry. Cyclin A2 participates in feedback loops that activate mitotic kinases in G2 phase, but why active Cyclin A2-CDK2 during the S phase does not trigger mitotic kinase activation remains unclear. Here, we describe a change in localisation of Cyclin A2 from being only nuclear to both nuclear and cytoplasmic at the S/G2 border. We find that Cyclin A2-CDK2 can activate the mitotic kinase PLK1 through phosphorylation of Bora, and that only cytoplasmic Cyclin A2 interacts with Bora and PLK1. Expression of predominately cytoplasmic Cyclin A2 or phospho-mimicking PLK1 T210D can partially rescue a G2 arrest caused by Cyclin A2 depletion. Cytoplasmic presence of Cyclin A2 is restricted by p21, in particular after DNA damage. Cyclin A2 chromatin association during DNA replication and additional mechanisms contribute to Cyclin A2 localisation change in the G2 phase. We find no evidence that such mechanisms involve G2 feedback loops and suggest that cytoplasmic appearance of Cyclin A2 at the S/G2 transition functions as a trigger for mitotic kinase activation.


Author(s):  
Yuchen Guo ◽  
Monica Gabola ◽  
Rossano Lattanzio ◽  
Conception Paul ◽  
Valérie Pinet ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document