scholarly journals Recent Progress in the Development of Disinfectants from Scallop Shell-Derived Calcium Oxide for Clinical and Daily Use

2021 ◽  
Vol 26 (3) ◽  
pp. 129-135
Author(s):  
YUUKI HATA ◽  
MASAYUKI ISHIHARA ◽  
SUMIYO HIRUMA ◽  
TOMOHIRO TAKAYAMA ◽  
SHINGO NAKAMURA ◽  
...  
2017 ◽  
Vol 82 (7) ◽  
pp. 1682-1687 ◽  
Author(s):  
Soo-Jin Jung ◽  
Shin Young Park ◽  
Seh Eun Kim ◽  
Ike Kang ◽  
Jiyong Park ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1991 ◽  
Author(s):  
Yoko Sato ◽  
Heisuke Ohata ◽  
Akinori Inoue ◽  
Masayuki Ishihara ◽  
Shingo Nakamura ◽  
...  

Bioshell calcium oxide (BiSCaO) is a scallop-shell powder heated at a high temperature. BiSCaO is composed mainly of calcium oxide and exhibits broad microbicidal properties. The aim of this study is to evaluate the disinfection and decontamination abilities of BiSCaO colloidal dispersions with that of commercially available bioshell calcium hydroxide (BiSCa(OH)2) following the formation of flocculants/precipitates under strongly alkaline conditions (pH 11.5–12.2). Various concentrations of BiSCaO and BiSCa(OH)2 colloidal dispersions were prepared by mixing with Na-polyPO4 (PP) and Na-triPO4 (TP) as flocculating agents. The microbicidal activities, and the degree of flocculation/precipitation of trypan blue, albumin, chondroitin sulfate, heparin, non-anticoagulant heparin carrying polystyrene (NAC-HCPS), and low-molecular-weight heparin/protamine nanoparticles (LMWH/P NPs) were dependent on the pH, the average particle diameter, and the concentration of BiSCaO or BiSCa(OH)2 and of the phosphate compound. BiSCaO (average particle diameter: 6 μm) colloidal dispersions (0.2 wt.%) containing 0.15 wt.% PP or TP exhibited substantially stronger microbicidal activity and flocculation/precipitation under strongly alkaline conditions. These results suggest that BiSCaO colloidal dispersions together with phosphate compounds have practical applicability for disinfection.


Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
Dawn A. Bonnell ◽  
Yong Liang

Recent progress in the application of scanning tunneling microscopy (STM) and tunneling spectroscopy (STS) to oxide surfaces has allowed issues of image formation mechanism and spatial resolution limitations to be addressed. As the STM analyses of oxide surfaces continues, it is becoming clear that the geometric and electronic structures of these surfaces are intrinsically complex. Since STM requires conductivity, the oxides in question are transition metal oxides that accommodate aliovalent dopants or nonstoichiometry to produce mobile carriers. To date, considerable effort has been directed toward probing the structures and reactivities of ZnO polar and nonpolar surfaces, TiO2 (110) and (001) surfaces and the SrTiO3 (001) surface, with a view towards integrating these results with the vast amount of previous surface analysis (LEED and photoemission) to build a more complete understanding of these surfaces. However, the spatial localization of the STM/STS provides a level of detail that leads to conclusions somewhat different from those made earlier.


1921 ◽  
Vol 3 (2supp) ◽  
pp. 182-182
Author(s):  
A. Slobod

Sign in / Sign up

Export Citation Format

Share Document