Application Of Rapid Tooling For Sheet Metal Forming: Flexible Drawing Die With Punches Built By SLS Technique and By Copying Process

2001 ◽  
Author(s):  
A. Gatto ◽  
L. Iuliano
Author(s):  
M.A. SEREZHKIN ◽  
D.O. KLIMYUK ◽  
A.I. PLOKHIKH

The article presents the study of the application of 3D printing technology for rapid tooling in sheet metal forming for custom or small–lot manufacturing. The main issue of the usage of 3D printing technology for die tooling was discovered. It is proposed to use the method of mathematical modelling to investigate how the printing parameters affect the compressive strength of FDM 3D–printed parts. Using expert research methods, the printing parameters most strongly affecting the strength of products were identified for further experiments. A method for testing the strength of 3D–printed materials has been developed and tested.


2012 ◽  
Vol 5 (2) ◽  
pp. 129-133
Author(s):  
Zhen Li ◽  
J. L. Wang ◽  
Jun Ye

2012 ◽  
Vol 5 (2) ◽  
pp. 129-133
Author(s):  
Zhen Li ◽  
J. L. Wang ◽  
Jun Ye

1998 ◽  
Vol 120 (4) ◽  
pp. 746-754 ◽  
Author(s):  
D. F. Walczyk ◽  
D. E. Hardt

Sheet metal forming dies constructed of laminations offer advantages over more conventional tooling fabrication methods (e.g. CNC-machining) in terms of tooling accessibility, reduced limitations on die geometry and faster fabrication with harder die materials. Furthermore, the recently introduced Profiled Edge Lamination (PEL) tooling method improves upon other lamination-based tooling methods. Adoption of this promising rapid tooling method by industry is being hindered by the lack of formal analysis, design principles, and manufacturing requirements needed to construct dies in such a manner. Therefore, the propensity for delamination of the die is discussed and preventive measures are suggested. The basic machining instructions, i.e., an array of points and directional vectors for each lamination, are outlined for both compound and planar profiled-edge bevels. Laser, AWJ and flute-edge endmilling are experimentally identified as the most promising methods for machining bevels. Development of a stand-alone PEL fabrication machine is suggested over retrofitting commercially-available 5-axis machines. Finally, the general procedure for creating PEL dies is implemented in the construction of a matched set of sheet metal forming tools. These tools are used to successfully stamp a sheet metal part out of draw-quality steel.


Author(s):  
Е. А. Фролов ◽  
В. В. Агарков ◽  
С. И. Кравченко ◽  
С. Г. Ясько

To determine the accuracy of the readjustable punches for separating operations (perforation + punching out) of sheet-metal forming, the accuracy parameters were analyzed using the random balance method using the method of experiment planning. Analytical dependencies are obtained to determine the values of deviation of the outer and inner contour dimensions of perforated and punched out sheet parts. From the dependencies obtained, it is possible to estimate and predict the value of deviation in the dimensions of the resulting part at any time during the operation of the punch. Practical recommendations on the calculation of the actuating dimensions of the working elements (stamping punch, matrix) of readjustable punches are offered.


Sign in / Sign up

Export Citation Format

Share Document