printing parameters
Recently Published Documents





2022 ◽  
Vol 281 ◽  
pp. 115061
Marius Rimašauskas ◽  
Elena Jasiūnienė ◽  
Tomas Kuncius ◽  
Rūta Rimašauskienė ◽  
Vaidotas Cicėnas

Open Ceramics ◽  
2022 ◽  
pp. 100218
Qirong Chen ◽  
Enrique Juste ◽  
Marie Lasgorceix ◽  
Fabrice Petit ◽  
Anne Leriche

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 57
Federico Bertolucci ◽  
Nicolò Berdozzi ◽  
Lara Rebaioli ◽  
Trunal Patil ◽  
Rocco Vertechy ◽  

Drop on demand (DoD) inkjet printing is a high precision, non-contact, and maskless additive manufacturing technique employed in producing high-precision micrometer-scaled geometries allowing free design manufacturing for flexible devices and printed electronics. A lot of studies exist regarding the ink droplet delivery from the nozzle to the substrate and the jet fluid dynamics, but the literature lacks systematic approaches dealing with the relationship between process parameters and geometrical outcome. This study investigates the influence of the main printing parameters (namely, the spacing between subsequent drops deposited on the substrate, the printing speed, and the nozzle temperature) on the accuracy of a representative geometry consisting of two interdigitated comb-shape electrodes. The study objective was achieved thanks to a proper experimental campaign developed according to Design of Experiments (DoE) methodology. The printing process performance was evaluated by suitable geometrical quantities extracted from the acquired images of the printed samples using a MATLAB algorithm. A drop spacing of 140 µm and 170 µm on the two main directions of the printing plane, with a nozzle temperature of 35 °C, resulted as the most appropriate parameter combination for printing the target geometry. No significant influence of the printing speed on the process outcomes was found, thus choosing the highest speed value within the investigated range can increase productivity.

2021 ◽  
Vol 13 (3) ◽  
pp. 185-190
Iakovos Xenikakis ◽  
Konstantinos Tsongas ◽  
Emmanouil K Tzimtzimis ◽  
Dimitrios Tzetzis ◽  

Microneedles (MN) are miniature devices capable of perforating painlessly stratum corneum and delivering active ingredients in the inner epidermal layers. Hollow microneedles (HMNs) are highly detailed objects due to their internal microchannels and thus, their fabrication with Additive Manufacturing (AM) is a challenging task. Vat polymerization techniques provide a sufficient accuracy for such microstructures. Differentiated from other approaches where stereolithography and 2-photon polymerization were adopted, this paper presents the 3D-printing of HMNs purposed for insulin delivery, using the more economic Liquid Crystal Display (LCD) method. First, different geometries (hexagon, square pyramid, beveled) were 3D printed with constant height and varying curing time, printing angle and layer resolution. Quality features in each case were captured with optical and scanning electron microscopy (SEM). The most promising geometry was found to be the beveled one due to the more refined tip area and the feasibility of non-clogged microchannel formation. Among printing parameters, printing angle proved to be the most influential, as it affects resin flow phenomenon during printing process. Lastly, optimized HMN geometry was the beveled configuration, where the average height was measured 900μm, 3D printing angle was set at -45°, the curing time was 10s per layer and the optimal layer height was 30μm.

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3441
Ho-Young Jun ◽  
Se-Jung Kim ◽  
Chang-Ho Choi

Inkjet printing of two-dimensional (2D) material has been a center of interest for wearable electronics and has become a promising platform for next-generation technologies. Despite the enormous progress made in printed 2D materials, there are still challenges in finding the optimal printing conditions involving the ink formulation and printing parameters. Adequate ink formulation and printing parameters for target 2D materials rely on empirical studies and repeated trials. Therefore, it is essential to compile promising strategies for ink formulation and printing parameters. In this context, this review discusses the optimal ink formulations to prepare stable ink and steady ink jetting and then explores the critical printing parameters for fabricating printed 2D materials of a high quality. The summary and future prospects for inkjet-printed 2D materials are also addressed.

Matteo Pitton ◽  
Andrea Fiorati ◽  
Silvia Buscemi ◽  
Lucio Melone ◽  
Silvia Farè ◽  

Pectin has found extensive interest in biomedical applications, including wound dressing, drug delivery, and cancer targeting. However, the low viscosity of pectin solutions hinders their applications in 3D bioprinting. Here, we developed multicomponent bioinks prepared by combining pectin with TEMPO-oxidized cellulose nanofibers (TOCNFs) to optimize the inks’ printability while ensuring stability of the printed hydrogels and simultaneously print viable cell-laden inks. First, we screened several combinations of pectin (1%, 1.5%, 2%, and 2.5% w/v) and TOCNFs (0%, 0.5%, 1%, and 1.5% w/v) by testing their rheological properties and printability. Addition of TOCNFs allowed increasing the inks’ viscosity while maintaining shear thinning rheological response, and it allowed us to identify the optimal pectin concentration (2.5% w/v). We then selected the optimal TOCNFs concentration (1% w/v) by evaluating the viability of cells embedded in the ink and eventually optimized the writing speed to be used to print accurate 3D grid structures. Bioinks were prepared by embedding L929 fibroblast cells in the ink printed by optimized printing parameters. The printed scaffolds were stable in a physiological-like environment and characterized by an elastic modulus of E = 1.8 ± 0.2 kPa. Cells loaded in the ink and printed were viable (cell viability >80%) and their metabolic activity increased in time during the in vitro culture, showing the potential use of the developed bioinks for biofabrication and tissue engineering applications.

2021 ◽  
pp. 102575
Qin Hu ◽  
Graham A. Rance ◽  
Gustavo F. Trindade ◽  
David Pervan ◽  
Long Jiang ◽  

Sign in / Sign up

Export Citation Format

Share Document