Fuel Cell Hybrid Control Strategy Development

Author(s):  
M. B. Stevens ◽  
C. Mendes ◽  
M. Fowler ◽  
R. A. Fraser
2008 ◽  
Vol 180 (2) ◽  
pp. 821-829 ◽  
Author(s):  
Yun Haitao ◽  
Zhao Yulan ◽  
Sun Zechang ◽  
Wan Gang

2010 ◽  
Vol 26-28 ◽  
pp. 1110-1114
Author(s):  
Dong Ji Xuan ◽  
Qian Ning ◽  
Zhen Zhe Li ◽  
Tai Hong Cheng ◽  
Yun De Shen

Based on the Matlab/Simulink module modeling for Fuel Cell Hybrid Electric Vehicle was carried out, which is comprised of the fuel cell stack model, a DC/DC converter model, a battery model, a motor model, avehiclemodel and a driver model, and Hybrid Control Unit(HCU) was developed. The HCU control strategy also incorporates regenerative braking and recharge for battery capacity recovery. Vehicle speed effect is evaluated in New Europe Driving Cycle. The simulation result that the control strategy implemented by HCU is achievable, and which proves that the mode of Start, Accele_FCBat, Cruise, RE_Brake, Power_FC and Pause operate sequently as well as reliably.


2011 ◽  
Author(s):  
Mohammed Abu Mallouh ◽  
Mohamad Al-Marouf ◽  
Brian Surgenor ◽  
Brant Peppley

2010 ◽  
Vol 35 (7) ◽  
pp. 2997-3000 ◽  
Author(s):  
Jarosław Milewski ◽  
Tomasz Świercz ◽  
Krzysztof Badyda ◽  
Andrzej Miller ◽  
Antoni Dmowski ◽  
...  

2003 ◽  
Author(s):  
Jin-Hwan Jung ◽  
Young-Kook Lee ◽  
Jung-Hong Joo ◽  
Ho-Gi Kim

2012 ◽  
Vol 33 (3) ◽  
pp. 445-461 ◽  
Author(s):  
Jarosław Milewski ◽  
Andrzej Miller

Abstract Based on mathematical modelling and numerical simulations, a control strategy for a Molten Carbonate Fuel Cell Hybrid System (MCFC-HS) is presented. Adequate maps of performances with three independent parameters are shown. The independent parameters are as follows: stack current, fuel mass flow and compressor outlet pressure. Those parameters can be controlled by external load, fuel valve and turbine-compressor shaft speed, respectively. The control system is purposed to meet many constraints: e.g. stack temperature, steam-to-carbon ratio, compressor surge limitation, etc. The aim is to achieve maximum efficiency of power generated within these constraints. Governing equations of MCFC-HS modelling are given. An operational line of the MCFC-GT system is presented which fulfils several constraints (temperature difference, cell temperature, etc.) The system is able to achieve efficiency of more than 62% even in part-load operation.


Sign in / Sign up

Export Citation Format

Share Document