Spray Visualization and Characterization of a Dual-Fuel Injector using Diesel and Gasoline

2014 ◽  
Vol 7 (1) ◽  
pp. 144-158 ◽  
Author(s):  
Karthik Nithyanandan ◽  
Deyang Hou ◽  
Gregory Major ◽  
Chia-Fon Lee
2018 ◽  
Vol 54 (9) ◽  
pp. 2725-2742 ◽  
Author(s):  
Amitav Chakraborty ◽  
Sumit Roy ◽  
Rahul Banerjee
Keyword(s):  

1985 ◽  
Author(s):  
Shinichi Goto ◽  
Kazuo Kontani

2020 ◽  
pp. 146808742096787
Author(s):  
Stephanie Frankl ◽  
Stephan Gleis ◽  
Stephan Karmann ◽  
Maximilian Prager ◽  
Georg Wachtmeister

This work is a numerical study of the use of ammonia and hydrogen in a high-pressure-dual-fuel (HPDF) combustion. The main fuels (hydrogen and ammonia) are direct injected and ignited by a small amount of direct injected pilot fuel. The fuels are injected using a dual fuel injector from Woodward L’Orange, which can induce two fuels independently at high pressures up to 1800 bar for the pilot fuel and maximum 500 bar for the main. The numerical CFD-model gets validated for of hydrogen-HPDF with experimental data. Due to safety issues at the test rig it was not possible to use ammonia in the experiments, so it is modelled using the numerical model. It is assumed that the CFD-model also gives qualitative correct results for the use of ammonia as main fuel, so a parameter study of ammonia-HPDF is made. The results for the hydrogen-HPDF show, that hydrogen can be used in the engine without any further modifications. The combustion is very stable, and the hydrogen ignites almost immediately when it enters the combustion chamber. The results of the ammonia combustion indicate, that the HPDF combustion mode can handle ammonia effectively. It seems beneficial to inject the ammonia at higher pressures than hydrogen. Also pre-heating the ammonia can increase the combustion efficiency.


Author(s):  
U. Dwivedi ◽  
C. D. Carpenter ◽  
E. S. Guerry ◽  
A. C. Polk ◽  
S. R. Krishnan ◽  
...  

Diesel-ignited gasoline dual fuel combustion experiments were performed in a single-cylinder research engine (SCRE), outfitted with a common-rail diesel injection system and a stand-alone engine controller. Gasoline was injected in the intake port using a port-fuel injector. The engine was operated at a constant speed of 1500 rev/min, a constant load of 5.2 bar indicated mean effective pressure (IMEP), and a constant gasoline energy substitution of 80%. Parameters such as diesel injection timing (SOI), diesel injection pressure, and boost pressure were varied to quantify their impact on engine performance and engine-out indicated specific nitrogen oxide emissions (ISNOx), indicated specific hydrocarbon emissions (ISHC), indicated specific carbon monoxide emissions (ISCO), and smoke emissions. Advancing SOI from 30 degrees before top dead center (DBTDC) to 60 DBTDC reduced ISNOx from 14 g/kW h to less than 0.1 g/kW h; further advancement of SOI did not yield significant ISNOx reduction. A fundamental change was observed from heterogeneous combustion at 30 DBTDC to “premixed enough” combustion at 50–80 DBTDC and finally to well-mixed diesel-assisted gasoline homogeneous charge compression ignition (HCCI)-like combustion at 170 DBTDC. Smoke emissions were less than 0.1 filter smoke number (FSN) at all SOIs, while ISHC and ISCO were in the range of 8–20 g/kW h, with the earliest SOIs yielding very high values. Indicated fuel conversion efficiencies were ∼ 40–42.5%. An injection pressure sweep from 200 to 1300 bar at 50 DBTDC SOI and 1.5 bar intake boost showed that very low injection pressures lead to more heterogeneous combustion and higher ISNOx and ISCO emissions, while smoke and ISHC emissions remained unaffected. A boost pressure sweep from 1.1 to 1.8 bar at 50 DBTDC SOI and 500 bar rail pressure showed very rapid combustion for the lowest boost conditions, leading to high pressure rise rates, higher ISNOx emissions, and lower ISCO emissions, while smoke and ISHC emissions remained unaffected by boost pressure variations.


Sign in / Sign up

Export Citation Format

Share Document