A Comparison of Fatigue Life Estimation on the Frequency Domain with Test Data and Time Domain Calculations

2016 ◽  
Author(s):  
Lawrence Tack Wen Yan
2005 ◽  
Vol 297-300 ◽  
pp. 1776-1783 ◽  
Author(s):  
Do Hyun Jung ◽  
Sung In Bae

Time domain approach with S-N approach and local strain approach were used for fatigue life estimation. But these days, using PSD (Power Spectral Density) method is highlighted, because of short amount of time in measurement and analysis. Especially, PSD method is useful for analysis of fatigue failure which is caused by vibration damage, also FRF (Frequency Response Function) is useful for efficient prediction of fatigue life when the same product is employing different motor vehicle or test condition. In order to estimate fatigue life of compressor for air conditioning, time domain analysis and frequency domain analysis were performed and the results were compared. As a result, results of analysis in frequency domain and time domain were similar. With this, there is recognition of decreasing the period of measuring and analysis in PSD analysis. Moreover, in case of FRF pursued of a part, using FRF is applicable at fatigue life prediction in different testing condition. There was investigated an analysis method with curtailed analysis period by FRF.


2015 ◽  
Vol 9 (33) ◽  
pp. 376-381 ◽  
Author(s):  
Andrea Carpinteri ◽  
Andrea Spagnoli ◽  
Camilla Ronchei ◽  
Sabrina Vantadori

Author(s):  
Iroizan Ubulom

Abstract A method of fluid-structure interaction coupling is implemented for a forced-response, vibration-induced fatigue life estimation of a high-pressure turbine blade. Two simulations approaches; a two-way (fully-coupled) and one-way (uncoupled) methods are implemented to investigate the influence of fluidsolid coupling on a turbine blade structural response. The fatigue analysis is performed using the frequency domain spectral moments estimated from the response power spectral density of the two simulation cases. The method is demonstrated in light of the time-domain method of the rainflow cycle counting method with mean stress correction. Correspondingly, the mean stress and multiaxiality effects are also accounted for in the frequency domain spectral approach. In the mean stress case, a multiplication coefficient is derived based on the Morrow equation, while the case of multiaxiality is based on a criterion which reduces the triaxial stress state to an equivalent uniaxial stress using the critical plane assumption. The analyses show that while the vibration-induced stress histories of both simulation approaches are stationary, they violate the assumption of normality of the frequency domain approaches. The stress history profile of both processes can be described as platykurtic with the distributions having less mass near its mean and in the tail region, as compared to a Gaussian distribution with an equal standard deviation. The fully-coupled method is right leaning with positive skewness while the uncoupled approach is left leaning with negative skewness. The directional orientation of the principal axes was also analyzed based on the Euler angle estimation. Although noticeable differences were found in the peak distribution of the normal stresses for both methods, the predicted Euler angle orientations were consistent in both cases, depicting a similar orientation of the critical plane during a crack initiation process. It is shown that the fatigue life estimation was conservative in the fully-coupled solution approach.


2019 ◽  
Vol 83 (4) ◽  
pp. 921-931
Author(s):  
Milan Zigo ◽  
Eray Arslan ◽  
Werner Mack ◽  
Gerhard Kepplinger

Author(s):  
Janko Slavič ◽  
Matjaž Mršnik ◽  
Martin Česnik ◽  
Jaka Javh ◽  
Miha Boltežar

Sign in / Sign up

Export Citation Format

Share Document