A Corrected Surrogate Model Based Multidisciplinary Design Optimization Method under Uncertainty

2017 ◽  
Vol 10 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Xianhe Wu ◽  
Yudong Fang ◽  
Zhenfei Zhan ◽  
Xu Liu ◽  
Gang Guo
Author(s):  
Zhiqiang Hu ◽  
Weicheng Cui ◽  
Jianmin Yang

It is well known that sharp bulbous bow has a good performance on ship resistance reduction, but it is also threatens the struck ships and the environment greatly. For their own economy profit, ship owners would like the bulbous bow to be designed sharp and rigid. However, from the viewpoint of environmental protection, the bulbous bow should be designed blunt and soft. Multidisciplinary Design Optimization (MDO) is a prosperous design concept and technique, to reconcile this problem effectively. The basic concept and theories of MDO are introduced in this paper. An optimization analysis is accomplished on the bulbous bow design for a container ship, using Collaborative Optimization Method. The characters of the bulbous bow on resistance reduction, collision force density and structural strength requirement are all considered at the same time. A compatible bulbous bow can be obtained by this way.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401982961
Author(s):  
Mengjiang Chai ◽  
Yongliang Yuan ◽  
Wenjuan Zhao

Chain drive is one of the most commonly used mechanical devices in the main equipment transmission system. In the past decade, scholars focused on basic performance research, but ignore its best performance. In this study, due to the large vibration of the chain drive in the transmission system, the vibration performance and optimization parameters are also considered as a new method to design the chain drive system to obtain the best performance of the chain drive system. This article proposes a new method and takes a chain drive design as a case based on the multidisciplinary design optimization. The system optimization objective and sub-systems are established by the multidisciplinary design optimization method. To obtain the best performance for the chain, the chain drive is executed by an improved particle swarm optimization algorithm. Dynamic characteristics of the chain drive system are simulated based on the multidisciplinary design optimization results. The impact force of the chain links, vibration displacement, and the vibration frequency are analyzed. The results show that the kinematics principle of the chain drive and the optimal parameter value are obtained based on the multidisciplinary design optimization method.


2013 ◽  
Vol 302 ◽  
pp. 583-588 ◽  
Author(s):  
Fredy M. Villanueva ◽  
Lin Shu He ◽  
Da Jun Xu

A multidisciplinary design optimization approach of a three stage solid propellant canister-launched launch vehicle is considered. A genetic algorithm (GA) optimization method has been used. The optimized launch vehicle (LV) is capable of delivering a microsatellite of 60 kg. to a low earth orbit (LEO) of 600 km. altitude. The LV design variables and the trajectory profile variables were optimized simultaneously, while a depleted shutdown condition was considered for every stage, avoiding the necessity of a thrust termination device, resulting in reduced gross launch mass of the LV. The results show that the proposed optimization approach was able to find the convergence of the optimal solution with highly acceptable value for conceptual design phase.


Sign in / Sign up

Export Citation Format

Share Document