Analysis of Cyclic Variation Using Time-Resolved Tomographic Particle-Image Velocimetry

2020 ◽  
Author(s):  
Marco Braun ◽  
Michael Klaas ◽  
Wolfgang Schröder
2020 ◽  
Vol 61 (2) ◽  
Author(s):  
Charles Farbos de Luzan ◽  
Liran Oren ◽  
Alexandra Maddox ◽  
Ephraim Gutmark ◽  
Sid M. Khosla

2021 ◽  
Vol 917 ◽  
Author(s):  
Everest G. Sewell ◽  
Kevin J. Ferguson ◽  
Vitaliy V. Krivets ◽  
Jeffrey W. Jacobs

Abstract


Author(s):  
Jianjun Feng ◽  
Friedrich-Karl Benra ◽  
Hans Josef Dohmen

The truly time-variant unsteady flow in a low specific speed radial diffuser pump stage has been investigated by time-resolved Particle Image Velocimetry (PIV) measurements. The measurements are conducted at the midspan of the blades for the design condition and also for some severe part-load conditions. The instantaneous flow fields among different impeller channels are analyzed and compared in detail, and more attention has been paid to flow separations at part-load conditions. The analysis of the measured results shows that the flow separations at two adjacent impeller channels are quite different at some part-load conditions. The separations generally exhibit a two-channel characteristic.


2002 ◽  
Vol 3 (3) ◽  
pp. 139-155 ◽  
Author(s):  
Y Li ◽  
H Zhao ◽  
Z Peng ◽  
N Ladommatos

Tumble motion in the cylinder of a four-valve spark ignition (SI) engine with a production-type cylinder head was studied using cross-correlation digital particle image velocimetry (PIV). The in-cylinder flow field was measured on three planes: the vertical symmetric plane of the combustion chamber, the vertical plane through centres of the intake and exhaust valves, and a horizontal plane 12 mm below the cylinder head. Ensemble-averaged mean velocity, velocity fluctuation distribution and cyclic variation of the instantaneous velocity field were analysed. Analysis results show that the tumble vortex is formed in the early stage of the compression stroke and distorted in the late stage of the compression stroke. The tumble centre is nearly in the centre of the cylinder when the tumble forms. Then it moves gradually to the underneath of the exhaust valves as the piston moves up. It is found that the cyclic variation of the tumble motion at a tumble ratio of 0.9 is so great that the ensemble-averaged flow characteristics hardly represent any individual cycle flow behaviours. Distribution of the velocity fluctuation field is inhomogeneous during the whole compression process. As the engine speed changes the large-scale flow structure seems to remain unaffected.


Author(s):  
Mohammed El Adawy ◽  
Morgan Heikal ◽  
bin Abd. Aziz Abd. Rashid

Abstract RICARDO-VECTIS CFD simulation of the in-cylinder air flow was first validated with those of the experimental results from high-speed particle image velocimetry (PIV) measurements taking cognisant of the mid-cylinder tumble plane. Furthermore, high-speed fuel spray measurements were carried out simultaneously with the intake-generated tumble motion at high valve lift using high-speed time-resolved PIV to chronicle the spatial and time-based development of air/fuel mixture. The effect of injection pressure(32.5 and 35.0 MPa) and pressure variation across the air intake valves(150, 300 and 450 mmH2O) on the interaction process were investigated at valve lift 10 mm where the tumble vortex was fully developed and filled the whole cylinder under steady-state conditions. The PIV results illustrated that the intake generated-tumble motion had a substantial impact on the fuel spray distortion and dispersion inside the cylinder. During the onset of the injection process the tumble motion diverted the spray plume slightly towards the exhaust side before it followed completely the tumble vortex. The fuel spray plume required 7.2 ms, 6.2 ms and 5.9 ms to totally follow the in-cylinder air motion for pressure differences 150, 300 and 450 mmH2O, respectively. Despite, the spray momentum was the same for the same injection pressure, the magnitude of kinetic energy was different for different cases of pressure differences and subsequently the in-cylinder motion strength.


Sign in / Sign up

Export Citation Format

Share Document