cyclic variation
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 39)

H-INDEX

32
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 438
Author(s):  
Linghai Han ◽  
Jiaquan Duan ◽  
Dingchao Qian ◽  
Yanfeng Gong ◽  
Yaodong Wang ◽  
...  

The thermal efficiency of an efficient gasoline engine is only about 40% and it will produce a large number of harmful products. Curbing harmful emissions and enhancing thermal efficiency have always been the goals pursued and emission regulations are also being tightened gradually. As one of the main consumers of fossil fuels, automobile engines must further reduce fuel consumption and emissions to comply with the concept of low-carbon development, which will also help them compete with electric vehicles. Homogeneous charge compression ignition (HCCI) combustion combined with variable valve actuation (VVA) technology is one of the important ways to improve engine emissions and economy. HCCI combustion based on VVA can only be realized at small and medium loads. The actual application on the entire vehicle needs to be combined with spark ignition (SI) combustion to achieve full working condition coverage. Therefore, HCCI combustion needs fast valve response characteristics; however, the valve lift and timing of the existing VVA mechanisms are mostly controlled separately, resulting in poor valve response. In order to solve this problem, the cam driven hydraulic variable valve actuation (CDH-VVA) mechanism was designed. The valve lift and timing can be adjusted at the same time and the switching of valve lift and timing can be completed in 1~2 cycles. A set of combustion mode switching data is selected to show the response characteristics of the CDH-VVA mechanism. When switching from spark ignition (SI) to HCCI, it switches to HCCI combustion after only one combustion cycle and it switches to stable HCCI combustion after two combustion cycles, which proves the fast response characteristics of the CDH-VVA mechanism. At the same time, the CDH-VVA mechanism can form the intake port exhaust gas recirculation (EGR), as one type of internal EGR. This paper studies the HCCI combustion characteristics of the CDH-VVA mechanism in order to optimize it in the future and enable it to realize more forms of HCCI combustion. At 1000 rpm, if the maximum lift of the exhaust valve (MLEV) is higher than 5.0 mm or lower than 1.5 mm, HCCI combustion cannot operate stably, the range of excess air coefficient (λ) is largest when the MLEV is 4.5 mm, ranging from 1.0~1.5. Then, as the MLEV decreases, the range of λ becomes smaller. When the MLEV drops to 1.5 mm, the range of λ shortens to 1.0~1.3. The maximum value of the MLEV remains the same at the three engine speeds (1000 rpm, 1200 rpm and 1400 rpm), which is 5.0 mm. The minimum value of the MLEV gradually climbs as the engine speed increase, 1000 rpm: 1.5 mm, 1200 rpm: 2.0 mm, 1400 rpm: 3.0 mm. With the increase of engine speed, the range of indicated mean effective pressure (IMEP) gradually declines, 3.53~6.31 bar (1000 rpm), 4.11~6.75 bar (1200 rpm), 5.02~6.09 bar (1400 rpm), which proves that the HCCI combustion loads of the intake port EGR are high and cannot be extended to low loads. The cyclic variation of HCCI combustion basically climbs with the decrease of the MLEV and slightly jumps with the increase of the engine speed. At 1000 rpm, when the MLEV is 5.0 mm, the cyclic variation range is 0.94%~1.5%. As the MLEV drops to 1.5 mm, the cyclic variation range rises to 3.5%~4.5%. Taking the maximum value of the MLEV as an example, the cyclic variation range of 1000 rpm is 0.94%~1.5%, 1200 rpm becomes 1.5%~2.3% and 1400 rpm rises to 2.0%~2.5%.


AIP Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 015202
Author(s):  
Ying Fan ◽  
Jiao Sun ◽  
Jie Jin ◽  
Kangfu Sun ◽  
Hui Zhang ◽  
...  

2021 ◽  
Vol 13 (2-3) ◽  
pp. 113-123
Author(s):  
Wen Hua ◽  
Zhang Xin-yu ◽  
Jiang Yu-long ◽  
Zhao Ling-yao

The fuel flow pattern in the fuel injection nozzle of diesel engine is a complex and changeable phenomenon, which is easily affected by various factors, bringing the differences of flow patterns between multiple injection cycles. To solve the above problem, a visual experimental platform of fuel injection nozzle was built, in which the 100 injection cycles of diesel engine on the same working condition were photographed via shadowgraphy to study the difference in fuel flow pattern in the nozzle by ensemble average processing method. The cyclic variation rate K of fuel flow pattern is defined. Results demonstrate that the fuel flow pattern tends to be the same in multiple fuel injection cycles, but there is a strong randomness at the starting of injection and after ending of injection; the K can be reduced by decreasing the injection pressure and the inclination angle of orifice, so that the fuel flow pattern in the nozzle tends to be consistent.


2021 ◽  
Vol 80 (23) ◽  
Author(s):  
Kuang-Tsung Chang ◽  
Kevin Zeh-Zon Lee ◽  
Po-Tsun Yeh ◽  
Chia-Ming Chang ◽  
Jin-Yi Yu

AbstractThe influence of stress state on the creep behavior of an artificial cemented sand resembling soft rocks was evaluated. The stress state was characterized by a mean stress and a stress ratio. The cyclic stress-induced creep test was adopted in this study, where the cyclic loading involved a constant deviator stress and a cyclic mean stress (or confining pressure) of the same amplitude and period; the test indicated similar trends as the conventional creep test with a shorter time to creep failure at less creep strain. Results showed that when the creep strain is large enough, the greater the creep strain accumulates, the smaller is the post-creep strength. Under the same number of cyclic loads, with the same stress ratio, the creep strain and the steady-state strain rate in the secondary creep stage increase with increasing mean stress; with the same mean stress, the two said parameters also increase with increasing stress ratio. It was also found that the time to reach creep failure decreases with decreasing mean stress and increasing stress ratio. The stress ratio is proposed to account for the tendency of a stress state to cause failure, and the cyclic variation of mean stress, which is equivalent to the effective mean stress with pore water pressure being zero in the tests conducted, reflects the effective stress state of a geomaterial under fluctuations of groundwater table. Under a fixed deviator stress, a soft porous geomaterial subjected to cyclic variation of effective mean stress may yield contraction and could lead to failure if the stress ratio is high. The findings can help explain the mechanism of ground subsidence or slope failure subjected to cyclic fluctuations of groundwater table.


2021 ◽  
Vol 43 (6) ◽  
pp. 299-307
Author(s):  
Scott Anjewierden ◽  
Oussama M. Wazni ◽  
D. Geoffrey Vince ◽  
Mohamed Kanj ◽  
Walid Saliba ◽  
...  

Radiofrequency ablation (RFA) is a common treatment of atrial fibrillation. However, current treatment is associated with a greater than 20% recurrence rate, in part due to inadequate monitoring of tissue viability during ablation. Spectral parameters, in particular cyclic variation of integrated backscatter (CVIB), have shown promise as early indicators of myocardial recovery from ischemia. Our aim was to demonstrate the use of spectral parameters to differentiate atrial myocardium before and after radiofrequency ablation. An AcuNav 10 F catheter was used to collect radiofrequency signals from the posterior wall of the left atrium of patients before and immediately after RFA for AF. The normalized power spectrum was obtained and three spectral parameters (integrated backscatter [IB], slope, and intercept) were extracted across two continuous heart cycles. Parameters were gated for ventricular end-diastole and compared before and after ablation. Additionally, the cyclic variation of each of these three parameters was generated as an average of the variation across the two recorded heart cycles. Data from 14 patients before and after ablation demonstrated a significant difference in the magnitude of the cyclic variation of integrated backscatter (9.0 vs. 6.0 dB, p < .001) and cyclic variation of the intercept (14.0 vs. 11.5 dB, p = .04). No significant difference was noted in the magnitude of the cyclic variation of the slope. Among spectral parameters gated for end-diastole, significant differences were noted in the slope (−4.39 vs. −3.73 dB/MHz, p = .002) and intercept (16.8 vs. 11.9 dB, p = .002). No significant difference was noted in the integrated backscatter. Spectral parameters are able to differentiate atrial myocardium before and immediately following ablation and may be useful in monitoring atrial ablations.


Fuel ◽  
2021 ◽  
Vol 299 ◽  
pp. 120891
Author(s):  
Huaiyu Wang ◽  
Changwei Ji ◽  
Cheng Shi ◽  
Yunshan Ge ◽  
Shuofeng Wang ◽  
...  

2021 ◽  
pp. 1-26
Author(s):  
Prabhakar Sharma ◽  
Avdhesh Kr Sharma

Abstract Experimental evaluation of cyclic variability or combustion instabilities of waste cooking oil biodiesel-diesel blends powered compression ignition engine is presented in this article. An advanced in-vehicle combustion analyzer armed with a piezoelectric pressure sensor was used for accurate measurements eradicating the experimental uncertainty. Cyclic variation in the combustion was investigated using the statistical and wavelet analysis method. Results of statistical methods and wavelet analysis were agreeing with each other towards self-validation. Statistical methods were used to calculate the mean and coefficient of variations, while the wavelet method has the potential to analyze the cyclic variation topography together with the intensity of variations in the engine combustion cycle, especially at low engine load conditions. Overall combustion analysis including wavelet analysis and statistical method indicates a more silent and smoother engine operation with biodiesel blending as it enhances combustion stability in unmodified diesel engines in comparison with conventional diesel fuel.


Sign in / Sign up

Export Citation Format

Share Document