Anti-Lock Braking System (ABS) with Integrated Drive Slip Control (ASR) for Commercial Vehicles

1986 ◽  
Author(s):  
Erwin Petersen ◽  
Erich Reinecke ◽  
Peter Liermann
CICTP 2020 ◽  
2020 ◽  
Author(s):  
Xuebo Li ◽  
Jian Ma ◽  
Xuan Zhao ◽  
Lu Wang ◽  
Haichao Lan

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 938
Author(s):  
Hanwei Bao ◽  
Zaiyu Wang ◽  
Zihao Liu ◽  
Gangyan Li

In contrast to the traditional pneumatic braking system, the electronic-controlled pneumatic braking system of commercial vehicles is a new system and can remedy the defects of the conventional braking system, such as long response time and low control accuracy. Additionally, it can adapt to the needs and development of autonomous driving. As the key pressure regulating component in electronic-controlled pneumatic braking system of commercial vehicles, automatic pressure regulating valves can quickly and accurately control the braking pressure in real time through an electronic control method. By aiming at improving driving comfort on the premise of ensuring braking security, this paper took the automatic pressure regulating valve as the research object and studied the pressure change rate during the braking process. First, the characteristics of the automatic pressure regulating valve and the concept of the pressure change rate were elaborated. Then, with the volume change of automatic pressure regulating valve in consideration, the mathematical model based on gas dynamics and the association model between pressure change rate and vehicle dynamic model was established in MATLAB/Simulink and analyzed. Next, through the experimental test of a sample product, the mathematical models have been verified. Finally, the key structure parameters affecting the pressure change rate of the automatic pressure regulating valve and the influence law have been identified; therefore, appropriate design advice and theoretical support have been provided to improve driving comfort.


2013 ◽  
Vol 393 ◽  
pp. 637-643 ◽  
Author(s):  
M.H.M. Ariff ◽  
Hairi Zamzuri ◽  
N.R.N. Idris ◽  
Saiful Amri Mazlan

The introduction of anti-lock braking system (ABS) has been regarded as one of the solutions for braking performance issues due to its notable advantages. The subject had been extensively being studied by researchers until today, to improve the performance of the todays vehicles particularly on the brake system. In this paper, a basic modeling of an ABS braking system via slip control has been introduced on a quarter car model with a conventional hydraulic braking mode. Results of three fundamental controller designs used to evaluate the braking performance of the modeled ABS systems are also been presented. This revisited modeling guide, could be a starting point for new researchers to comprehend the basic braking system behavior before going into more complex braking systems studies.


2019 ◽  
Vol 26 (3/4) ◽  
pp. 268 ◽  
Author(s):  
Hongyu Zheng ◽  
Shenao Ma ◽  
Lingxiao Fang ◽  
Weiqiang Zhao ◽  
Tianjun Zhu

Author(s):  
Graeme Morrison ◽  
David Cebon

A pneumatic slip control braking system was demonstrated, which reduces the emergency stopping distances of heavy goods vehicles by up to 19%. Solutions are still required to set the optimal reference wheel slip for this system online, so that it can adapt to changing operating conditions. This paper considers whether the use of extremum-seeking algorithms is a feasible alternative approach to online tyre model fitting, the computational expense of which has, to date, inhibited real-time implementation. The convergence and the stability properties of a first-order sliding-mode extremum-seeking algorithm are discussed, and its tuneable parameters are recast as physically meaningful performance metrics. Computer simulations are conducted using a detailed braking system model, and hardware-in-the-loop simulations are conducted with prototype pneumatic slip control braking hardware for heavy goods vehicles. The extremum-seeking algorithm enables the braking system to achieve at least 95% of the maximum possible braking force for almost the entirety of an emergency stop. The robustness to parameter errors, the road roughness and the changing friction conditions are all explored.


2019 ◽  
Vol 1 (2) ◽  
pp. 1019-1024
Author(s):  
Dobrivoje Ćatić ◽  
Jasna Glišović

Sign in / Sign up

Export Citation Format

Share Document