Measurement of Heavy Vehicle Suspension Roll-Stability Properties, and A Method to Evaluate Overall Stability Performance

1988 ◽  
Author(s):  
Leslie A. Laird
2015 ◽  
Vol 789-790 ◽  
pp. 957-961
Author(s):  
Syabillah Sulaiman ◽  
Pakharuddin Mohd Samin ◽  
Hishamuddin Jamaluddin ◽  
Roslan Abd Rahman ◽  
Saiful Anuar Abu Bakar

This paper proposed semi active controller scheme for magnetorheological (MR) damper of a heavy vehicle suspension known as Tire Force Control (TFC). A reported algorithm in the literature to reduce tire force is Groundhook (GRD). Thus, the objective of this paper is to investigate the effectiveness of the proposed TFC algorithm compared to GRD. These algorithms are applied to a quarter heavy vehicle models, where the objective of the proposed controller is to reduce unsprung force (tire force). The simulation model was developed and simulated using MATLAB Simulink software. The use of semi active MR damper using TFC is analytically studied. Ride test was conducted at three different speeds and three bump heights, and the simulation results of TFC and GRD are compared and analysed. The results showed that the proposed controller is able to reduced tire force significantly compared to GRD control strategy.


2021 ◽  
Author(s):  
Sankar Basu ◽  
Simon S. Assaf ◽  
Fabian Teheux ◽  
Marianne Rooman ◽  
Fabrizio Pucci

AbstractUnderstanding the role of stability strengths and weaknesses in proteins is a key objective for rationalizing their dynamical and functional properties such as conformational changes, catalytic activity, and protein-protein and protein-ligand interactions. We present BRANEart, a new, fast and accurate method to evaluate the per-residue contributions to the overall stability of membrane proteins. It is based on an extended set of recently introduced statistical potentials derived from membrane protein structures, which better describe the stability properties of this class of proteins than standard potentials derived from globular proteins. We defined a per-residue membrane propensity index from combinations of these potentials, which can be used to identify residues which strongly contribute to the stability of the transmembrane region or which would, on the contrary, be more stable in extramembrane regions, or vice versa. Large-scale application to membrane and globular proteins sets and application to tests cases show excellent agreement with experimental data. BRANEart thus appears as a useful instrument to analyze in detail the overall stability properties of a target membrane protein, to position it relative to the lipid bilayer, and to rationally modify its biophysical characteristics and function. BRANEart can be freely accessed from http://babylone.3bio.ulb.ac.be/BRANEart.


1988 ◽  
Vol 17 (sup1) ◽  
pp. 223-226 ◽  
Author(s):  
P.A. LeBlanc ◽  
J.H.E. Woodrooffe ◽  
B. Yuan ◽  
H.L. Ploeg

2015 ◽  
Vol 789-790 ◽  
pp. 913-917 ◽  
Author(s):  
Syabillah Sulaiman ◽  
Pakharuddin Mohd Samin ◽  
Hishamuddin Jamaluddin ◽  
Roslan Abd Rahman ◽  
Saiful Anuar Abu Bakar

This paper proposed semi active controller scheme for magnetorheological (MR) damper of a heavy vehicle suspension known as Ground Semi Active Damping Force Estimator (gSADE), where it was modified from Semi Active Damping Force Estimator (SADE) algorithm. A reported algorithm known as Groundhook (GRD) was developed where its aim to minimize tire road forces and hence reduce road damage. Thus, the objective of this paper is to investigate the effectiveness of the proposed gSADE algorithm compared to GRD and SADE. These algorithms are applied to a quarter heavy vehicle models and the simulation model was developed and simulated using MATLAB Simulink software. Ride test was conducted at three different speeds and three bump heights, and the simulation results of gSADE, SADE and GRD are compared and analysed. The results showed that the proposed controller is able to reduced tire force significantly compared to GRD control strategy.


Author(s):  
P.A. LeBlanc ◽  
J.H.F. Woodrooffe ◽  
B. Yuan ◽  
H.L. Ploeg

Sign in / Sign up

Export Citation Format

Share Document