Experimental Study on Rankine Cycle Using Ammonia-Water Mixture as a Working Fluid

1992 ◽  
Author(s):  
Masato Taki ◽  
Tsunehiko Sugiura ◽  
Tadashi Tanaka ◽  
Isamu Osada ◽  
Tokuji Matsuo ◽  
...  

2006 ◽  
Vol 2006 (0) ◽  
pp. 71-72
Author(s):  
Yasuyuki IKEGAMI ◽  
Hiroyuki ASOU ◽  
Takeshi YASUNAGA ◽  
Hirokazu MANDA ◽  
Kaori KUBO


Author(s):  
Calin Zamfirescu ◽  
Ibrahim Dincer

In this paper we thermodynamically assess the performance of an ammonia-water Rankine cycle that uses no boiler, but rather the saturated liquid is flashed by a volumetric expander (e.g., reciprocating, centrifugal, screw or scroll type expander) for power generation. This cycle has no pinch point and thus the exergy of the heat source can be better used by matching the temperature profiles of the hot and the working fluids in the benefit of performance improvement. The second feature comes from the use of the ammonia-water mixture that offers further opportunity to better match the temperature profiles at the source and sink level. This fact brings ∼10% improvement of exergy efficiency with respect to the case when a single substance (e.g., steam) is used as working fluid. The influence of the expander efficiency, ammonia concentration and the coolant flow rate is investigated and reported for a case study. The applications of this cycle can be found in low power/low temperature heat recovery from geothermal sources, ocean thermal energy conversion, solar energy or process waste heat etc where the cycle competes with Kalina, supercritical or multi-pressure steam implementations of the Rankine cycle.



Author(s):  
E. Olsson ◽  
U. Desideri ◽  
S. S. Stecco ◽  
G. Svedberg

A number of studies have shown that the Kalina cycle, using an ammonia-water mixture, can reach higher efficiencies than the normal steam Rankine cycle. In this paper, the Kalina cycle, with a gas turbine topping cycle is applied to cogeneration for district heating. Since the district heating temperatures vary with the heat demand over the year, this application may prove to be especially suitable for the Kalina cycle with its many degrees of freedom in the condensation system. A theoretical comparison between different bottoming cycles producing heat for a typical Scandinavian district heating network has been carried out. The Kalina cycle, the Rankine cycle with a mixture of ammonia and water as the working fluid and the normal single pressure steam Rankine cycle are compared. It is shown that a simple Rankine cycle with an ammonia-water mixture as the working fluid produces more heat and power than the steam Rankine cycle. The best results, however, are obtained for the Kalina cycle, which generates considerably higher heat and power output than the steam Rankine cycle.



2005 ◽  
Vol 2005.10 (0) ◽  
pp. 203-204
Author(s):  
Yasuyuki IKEGAMI ◽  
Takeshi YASUNAGA ◽  
Hidemitsu HARADA ◽  
Haruo UEHARA


2019 ◽  
Vol 27 (02) ◽  
pp. 1950012 ◽  
Author(s):  
Zeynab Seyfouri ◽  
Mehran Ameri ◽  
Mozaffar Ali Mehrabian

In the present study, a totally heat-driven refrigeration system is proposed and thermodynamically analyzed. This system uses a low-temperature heat source such as geothermal energy or solar energy to produce cooling at freezing temperatures. The proposed system comprises a Rankine cycle (RC) and a hybrid GAX (HGAX) refrigeration cycle, in which the RC provides the power requirement of the HGAX cycle. An ammonia–water mixture is used in both RC and HGAX cycles as the working fluid. A comparative study is conducted in which the proposed system is compared with two other systems using GAX cycle and/or a single stage cycle, as the refrigeration cycle. The study shows that the proposed system is preferred to produce cooling at temperatures from 2∘C to [Formula: see text]C. A detailed parametric analysis of the proposed system is carried out. The results of the analysis show that the system can produce cooling at [Formula: see text]C using a low-temperature heat source at 133.5∘C with the exergy efficiency of about 20% without any input power. By increasing the heat source temperature to 160∘C, an exergy efficiency of 25% can be achieved.



2006 ◽  
Author(s):  
Araceli Lara V. ◽  
David Sandoval C. ◽  
Juan Morales G. ◽  
Raymundo Lo´pez C. ◽  
Arturo Lizardi R. ◽  
...  

An analysis of the exergy use in an Einstein refrigeration cycle is presented. The analysis is performed through the use of a new graphical multidimensional representation of the cycle. The Einstein refrigeration cycle works with ammonia, butane and water. These compounds are present in the cycle as several ammonia-water and ammonia-butane mixtures that have different compositions. In essence, the cycle transfers ammonia from an ammonia-water mixture to an ammoniabutane mixture in a series of processes and then it transfers ammonia back again to an ammonia-water mixture in another series of processes. The ammonia transfers involve heat absorptions and heat rejections that have as an effect the transfer of heat from a low temperature reservoir to a high temperature reservoir. The aforementioned multidimensional graph was built with equilibrium data of the ammonia-water and ammonia-butane binary systems for a 4 bar pressure and a 240 K to 350 K temperature range. The graphical representation is multidimensional because it shows in one graph values of concentration, temperature, enthalpy, entropy and exergy for ammonia-water mixtures and ammonia-butane mixtures. The thermodynamic states of all the process currents present in the cycle are showed in the graph, as well as are the different thermodynamic processes of the cycle. The exergy destruction rate of each device is clearly represented. The usefulness of this graph is similar to that of the T-s graph for a Rankine cycle.



2002 ◽  
Vol 2002.55 (0) ◽  
pp. 219-220
Author(s):  
Keisuke TAKESHITA ◽  
Tamotsu ISHIGAMI ◽  
Taketoshi GOKANO ◽  
Yoshiharu AMANO ◽  
Takumi HASHIZUME


Sign in / Sign up

Export Citation Format

Share Document