Battery Electric Vehicle Energy Consumption and Range Test Procedure

2017 ◽  
Author(s):  
Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 62 ◽  
Author(s):  
Jan Kleiner ◽  
Lidiya Komsiyska ◽  
Gordon Elger ◽  
Christian Endisch

In electric vehicles with lithium-ion battery systems, the temperature of the battery cells has a great impact on performance, safety, and lifetime. Therefore, developing thermal models of lithium-ion batteries to predict and investigate the temperature development and its impact is crucial. Commonly, models are validated with experimental data to ensure correct model behaviour. However, influences of experimental setups or comprehensive validation concepts are often not considered, especially for the use case of prismatic cells in a battery electric vehicle. In this work, a 3D electro–thermal model is developed and experimentally validated to predict the cell’s temperature behaviour for a single prismatic cell under battery electric vehicle (BEV) boundary conditions. One focus is on the development of a single cell’s experimental setup and the investigation of the commonly neglected influences of an experimental setup on the cell’s thermal behaviour. Furthermore, a detailed validation is performed for the laboratory BEV scenario for spatially resolved temperatures and heat generation. For validation, static and dynamic loads are considered as well as the detected experimental influences. The validated model is used to predict the temperature within the cell in the BEV application for constant current and Worldwide harmonized Light vehicles Test Procedure (WLTP) load profile.


Sign in / Sign up

Export Citation Format

Share Document