scholarly journals Case study of terrain measurement using terrestrial laser scanner and Unmanned Aerial Vehicle mounted laser scanner

2018 ◽  
Vol 57 (2) ◽  
pp. 70-73
Author(s):  
Michihito TAKATO
2021 ◽  
Vol 5 (2) ◽  
pp. 520-525
Author(s):  
Sawitri Subiyanto ◽  
Nurhadi Bashit ◽  
Naftalie Dinda Rianty ◽  
Aulia Darmaputri Savitri

The rapid development of the construction world in Indonesia has led to an increase in supporting technology that is more effective and efficient. The Building Information Model (BIM) technology that begins with the creation of an as-built 3D model, this model describes the existing condition of the building. The Terrestrial Laser Scanner (TLS) method can provide a point cloud with a decent point density, but there are still areas of the building that aren't covered, such as the roof. To be more complete and detailed, additional data is needed using an Unmanned Aerial Vehicle (UAV). The results of the combination of TLS and UAV complement each other so that the results of the point cloud can form more detailed buildings. BIM may be built by combining these two data sets, allowing for the three-dimensional depiction of assets in buildings. The registration results for TLS point cloud data have a fairly good value where the overlap value is 44.9% (minimum 30%), balance is 41.2% (minimum 20%), points < 6mm is 98.9% (minimum 90%). The measurement results using the UAV have an RMSE GCP value of 0.266m and an RMSE ICP of 0.455m. Merging the results of TLS and UAV measurements is done using 3DReshaper software with four align points. The final result of making the BIM model is obtained level of detail (LOD) 3 where room models such as columns, floors, stairs, and walls are well depicted, while asset models such as furniture are also depicted although they are still simple objects.


2020 ◽  
Vol 12 (14) ◽  
pp. 2221 ◽  
Author(s):  
Patricio Martínez-Carricondo ◽  
Francisco Agüera-Vega ◽  
Fernando Carvajal-Ramírez

In this study, an analysis of the capabilities of unmanned aerial vehicle (UAV) photogrammetry to obtain point clouds from areas with a near-vertical inclination was carried out. For this purpose, 18 different combinations were proposed, varying the number of ground control points (GCPs), the adequacy (or not) of the distribution of GCPs, and the orientation of the photographs (nadir and oblique). The results have shown that under certain conditions, the accuracy achieved was similar to those obtained by a terrestrial laser scanner (TLS). For this reason, it is necessary to increase the number of GCPs as much as possible in order to cover a whole study area. In the event that this is not possible, the inclusion of oblique photography ostensibly improves results; therefore, it is always advisable since they also improve the geometric descriptions of break lines or sudden changes in slope. In this sense, UAVs seem to be a more economic substitute compared to TLS for vertical wall surveying.


Author(s):  
Mohamad Aizat Asyraff Mohamad Azmi ◽  
Mohd Azwan Abbas ◽  
Khairulazhar Zainuddin ◽  
Mohamad Asrul Mustafar ◽  
Mohd Zainee Zainal ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2964 ◽  
Author(s):  
Gaël Kermarrec ◽  
Hamza Alkhatib ◽  
Ingo Neumann

For a trustworthy least-squares (LS) solution, a good description of the stochastic properties of the measurements is indispensable. For a terrestrial laser scanner (TLS), the range variance can be described by a power law function with respect to the intensity of the reflected signal. The power and scaling factors depend on the laser scanner under consideration, and could be accurately determined by means of calibrations in 1d mode or residual analysis of LS adjustment. However, such procedures complicate significantly the use of empirical intensity models (IM). The extent to which a point-wise weighting is suitable when the derived variance covariance matrix (VCM) is further used in a LS adjustment remains moreover questionable. Thanks to closed loop simulations, where both the true geometry and stochastic model are under control, we investigate how variations of the parameters of the IM affect the results of a LS adjustment. As a case study, we consider the determination of the Cartesian coordinates of the control points (CP) from a B-splines curve. We show that a constant variance can be assessed to all the points of an object having homogeneous properties, without affecting the a posteriori variance factor or the loss of efficiency of the LS solution. The results from a real case scenario highlight that the conclusions of the simulations stay valid even for more challenging geometries. A procedure to determine the range variance is proposed to simplify the computation of the VCM.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Raffaella De Marco ◽  
Sandro Parrinello

Cultural heritage and the attendant variety of built heritage demands a scientific approach from European committees: one related to the difficulties in its protection and management. This is primarily due to the lack of emergency protocols related to the structural knowledge and documentation pertaining to architecture and its ruins, specifically in terms of the goals of protection and intervention for endangered heritage affected by mechanical instabilities. Here, we focus on a rapid and reliable structural documentation pipeline for application to historical built heritage, and we introduce a case study of the Church of the Annunciation in Pokcha, Russia, while we also review the incorporation of integrated 3D survey products into reality-based models. This practice increases the possibility of systematising data through methodological phases and controlling the quality of numerical components into 3D polygonal meshes, with millimetric levels of detail and triangulation through the integration of terrestrial laser scanner and unmanned aerial vehicle survey data. These models are aimed at emphasising morphological qualities related to structural behaviour, thus highlighting areas of deformation and instability of the architectural system for analysis via computational platforms in view of obtaining information related to tensional behaviour and emergency risks.


2018 ◽  
Vol 130 ◽  
pp. 636-643 ◽  
Author(s):  
Muhammad Arsalan Khan ◽  
Wim Ectors ◽  
Tom Bellemans ◽  
Yassine Ruichek ◽  
Ansar-ul-Haque Yasar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document