scholarly journals A deep-learning based water-level measurement method from CCTV camera images

2019 ◽  
Vol 58 (1) ◽  
pp. 28-33
Author(s):  
Hideaki MAEHARA ◽  
Momoyo NAGASE ◽  
Michihiro KUCHI ◽  
Toshihisa SUZUKI ◽  
Kenji TAIRA
2020 ◽  
Vol 28 (9) ◽  
pp. 2027-2034
Author(s):  
Yue-jie SHU ◽  
◽  
Jun WU ◽  
Yuan-hang ZHOU ◽  
Yu-feng MA ◽  
...  

2021 ◽  
Author(s):  
Radosław Szostak ◽  
Przemysław Wachniew ◽  
Mirosław Zimnoch ◽  
Paweł Ćwiąkała ◽  
Edyta Puniach ◽  
...  

<p>Unmanned Aerial Vehicles (UAVs) can be an excellent tool for environmental measurements due to their ability to reach inaccessible places and fast data acquisition over large areas. In particular drones may have a potential application in hydrology, as they can be used to create photogrammetric digital elevation models (DEM) of the terrain allowing to obtain high resolution spatial distribution of water level in the river to be fed into hydrological models. Nevertheless, photogrammetric algorithms generate distortions on the DEM at the water bodies. This is due to light penetration below the water surface and the lack of static characteristic points on water surface that can be distinguished by the photogrammetric algorithm. The correction of these disturbances could be achieved by applying deep learning methods. For this purpose, it is necessary to build a training dataset containing DEMs before and after water surfaces denoising. A method has been developed to prepare such a dataset. It is divided into several stages. In the first step a photogrammetric surveys and geodetic water level measurements are performed. The second one includes generation of DEMs and orthomosaics using photogrammetric software. Finally in the last one the interpolation of the measured water levels is done to obtain a plane of the water surface and apply it to the DEMs to correct the distortion. The resulting dataset was used to train deep learning model based on convolutional neural networks. The proposed method has been validated on observation data representing part of Kocinka river catchment located in the central Poland.</p><p>This research has been partly supported by the Ministry of Science and Higher Education Project “Initiative for Excellence – Research University” and Ministry of Science and Higher Education subsidy, project no. 16.16.220.842-B02 / 16.16.150.545.</p>


2021 ◽  
Author(s):  
Jingwei Yang ◽  
Yikang Wang ◽  
Chong Li ◽  
Wei Han ◽  
Weiwei Liu ◽  
...  

Background: Pronuclear assessment appears to have the ability to distinguish good and bad embryos in the zygote stage,but paradoxical results were obtained in clinical studies.This situation might be caused by the robust qualitative detection of the development of dynamic pronuclei. Here,we aim to establish a quantitative pronuclear measurement method by applying expert experience deep learning from large annotated datasets. Methods: Convinced handle-annotated 2PN images(13419) were used for deep learning then corresponded errors were recorded through handle check for subsequent parameters adjusting. We used 790 embryos with 52479 PN images from 155 patients for analysis the area of pronuclei and the preimplantation genetic test results.Establishment of the exponential fitting equation and the key coefficient β1 was extracted from the model for quantitative analysis for pronuclear(PN) annotation and automatic recognition. Findings: Based on the female original PN coefficient β1,the chromosome normal rate in the blastocyst with biggest PN area is much higher than that of the blastocyst with smallest PN area(58.06% vs.45.16%, OR=1.68[1.07-2.64];P=0.031).After adjusting coefficient β1 by the first three frames which high variance of outlier PN areas was removed, coefficient β1 at 12 hours and at 14 hours post-insemination,similar but stronger evidence was obtained. All these discrepancies resulted from the female propositus in the PGT(SR) subgroup and smaller chromosomal errors. Conclusion(s): The results suggest that detailed analysis of the images of embryos could improve our understanding of developmental biology. Funding: None


Sign in / Sign up

Export Citation Format

Share Document