The Ammophila of North & Central America (Hymenoptera, Sphecidae)

Author(s):  
Wojciech J. Pulawski
2019 ◽  
Vol 100 (5) ◽  
pp. 1631-1652 ◽  
Author(s):  
Manuel Ruiz-García ◽  
Maria Fernanda Jaramillo ◽  
Joseph Mark Shostell

AbstractKnowledge of how a species is divided into different genetic units, and the structure among these units, is fundamental to the protection of biodiversity. Procyonidae was one of the families in the Order Carnivora with more success in the colonization of South America. The most divergent species in this family is the kinkajou (Potos flavus). However, knowledge of the genetics and evolution of this species is scarce. We analyzed five mitochondrial genes within 129 individuals of P. flavus from seven Neotropical countries (Mexico, Guatemala, Honduras, Colombia, Ecuador, Peru, and Bolivia). We detected eight different populations or haplogroups, although only three had highly significant bootstrap values (southern Mexico and Central America; northern Peruvian, Ecuadorian, and Colombian Amazon; and north-central Andes and the southern Amazon in Peru). Some analyses showed that the ancestor of the southern Mexico–Central America haplogroup was the first to appear. The youngest haplogroups were those at the most southern area analyzed in Peru and Bolivia. A “borrowed molecular clock” estimated the initial diversification to have occurred around 9.6 million years ago (MYA). All the spatial genetic analyses detected a very strong spatial structure with significant genetic patches (average diameter around 400–500 km) and a clinal isolation by distance among them. The overall sample and all of the haplogroups we detected had elevated levels of genetic diversity, which strongly indicates their long existence. A Bayesian Skyline Plot detected, for the overall sample and for the three most significant haplogroups, a decrease in the number of females within the last 30,000–50,000 years, with a strong decrease in the last 10,000–20,000 years. Our data supported an alignment of some but not all haplogroups with putative morphological subspecies. We have not discounted the possibility of a cryptic kinkajou species.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 94 ◽  
Author(s):  
Vance G. Nielsen ◽  
Nathaniel Frank ◽  
Sam Afshar

Snakebite with hemotoxic venom continues to be a major source of morbidity and mortality worldwide. Our laboratory has characterized the coagulopathy that occurs in vitro in human plasma via specialized thrombelastographic methods to determine if venoms are predominantly anticoagulant or procoagulant in nature. Further, the exposure of venoms to carbon monoxide (CO) or O-phenylhydroxylamine (PHA) modulate putative heme groups attached to key enzymes has also provided mechanistic insight into the multiple different activities contained in one venom. The present investigation used these techniques to characterize fourteen different venoms obtained from snakes from North, Central, and South America. Further, we review and present previous thrombelastographic-based analyses of eighteen other species from the Americas. Venoms were found to be anticoagulant and procoagulant (thrombin-like activity, thrombin-generating activity). All prospectively assessed venom activities were determined to be heme-modulated except two, wherein both CO and its carrier molecule were found to inhibit activity, while PHA did not affect activity (Bothriechis schlegelii and Crotalus organus abyssus). When divided by continent, North and Central America contained venoms with mostly anticoagulant activities, several thrombin-like activities, with only two thrombin-generating activity containing venoms. In contrast, most venoms with thrombin-generating activity were located in South America, derived from Bothrops species. In conclusion, the kinetomic profiles of venoms obtained from thirty-two Pan-American Pit Viper species are presented. It is anticipated that this approach will be utilized to identify clinically relevant hemotoxic venom enzymatic activity and assess the efficacy of locally delivered CO or systemically administered antivenoms.


1988 ◽  
Vol 62 (03) ◽  
pp. 411-419 ◽  
Author(s):  
Colin W. Stearn

Stromatoporoids are the principal framebuilding organisms in the patch reef that is part of the reservoir of the Normandville field. The reef is 10 m thick and 1.5 km2in area and demonstrates that stromatoporoids retained their ability to build reefal edifices into Famennian time despite the biotic crisis at the close of Frasnian time. The fauna is dominated by labechiids but includes three non-labechiid species. The most abundant species isStylostroma sinense(Dong) butLabechia palliseriStearn is also common. Both these species are highly variable and are described in terms of multiple phases that occur in a single skeleton. The other species described areClathrostromacf.C. jukkenseYavorsky,Gerronostromasp. (a columnar species), andStromatoporasp. The fauna belongs in Famennian/Strunian assemblage 2 as defined by Stearn et al. (1988).


Sign in / Sign up

Export Citation Format

Share Document