A Collaborative Nonlocal-Means Super-resolution Algorithm Using Zernike Monments

2011 ◽  
Vol 6 (7) ◽  
Author(s):  
Lin Guo ◽  
Qinghu Chen
2015 ◽  
Vol 16 (2) ◽  
pp. 296
Author(s):  
Gunnam Suryanarayana ◽  
Ravindra Dhuli

In this correspondence, we propose a novel image resolution enhancement algorithm based on discretewavelet transform (DWT), stationary wavelet transform (SWT) and sparse signal recovery of the inputimage. The nonlocal means filter is employed in the preliminary denoising stage of the proposed method.The denoised input low resolution (LR) image is then decomposed into different frequency subbands byemploying DWT and SWT simultaneously. In parallel, the denoised LR image is subjected to a sparse signalrepresentation based interpolation. All the estimated high frequency subbands as well as the sparseinterpolated LR image are fused to generate a high resolution (HR) image by using inverse discrete wavelettransform (IDWT). Experimental results on various test images show the superiority of our method over theconventional and state-of-the-art single image super- resolution (SR) techniques in achieving the real timeperformance.


2014 ◽  
Vol 610 ◽  
pp. 425-428
Author(s):  
Wei Jian Liu ◽  
Si Da Xiao ◽  
Ruo He Yao

In this paper, we propose a new super-resolution algorithm based on wavelet coefficient. The proposed algorithm uses discrete wavelet transform (DWT) to decompose the input low-resolution image sequences into four subband images, including LL, LH, HL, HH. Then the input images have been processed by the 3DSKR (Three Dimensional Steering Kernel Regression) super resolution (SR) algorithm, and the result replaces the LL subband image, while the three high-frequency subband images have been interpolated. Finally, combining all these images to generate a new high-resolution image by using inverse DWT. Proposed method has been verified on Calendar and Foliage by Matlab software platform. The peak signal-to-noise (PSNR), structural similarity (SSIM) and visual results are compared, and show that the computational complexity of the proposed algorithm decline by 30 percent compared with the existing algorithm to obtain the approximate results.


Author(s):  
Darakhshan R. Khan

Region filling which has another name inpainting, is an approach to find the values of missing pixels from data available in the remaining portion of the image. The missing information must be recalculated in a distinctly convincing manner, such that, image look seamless. This research work has built a methodology for completely automating patch priority based region filling process. To reduce the computational time, low resolution image is constructed from input image. Based on texel of an image, patch size is determined. Several low resolution image with missing region filled is generated using region filling algorithm. Pixel information from these low resolution images is consolidated to produce single low resolution region filled image. Finally, super resolution algorithm is applied to enhance the quality of image and regain all specifics of image. This methodology of identifying patch size based on input fed has an advantage over filling algorithms which in true sense automate the process of region filling, to deal with sensitivity in region filling, algorithm different parameter settings are used and functioning with coarse version of image will notably reduce the computational time.


2013 ◽  
Author(s):  
Hui Yu ◽  
Fu-sheng Chen ◽  
Zhi-jie Zhang ◽  
Chen-sheng Wang

2013 ◽  
Vol 21 (17) ◽  
pp. 19850 ◽  
Author(s):  
A. V. Kanaev ◽  
C. W. Miller

Sign in / Sign up

Export Citation Format

Share Document