Integrating Encrypted Mobile Agents with Smart Spaces in a Multi-agent Simulator for Resource Management

2010 ◽  
Vol 5 (6) ◽  
Author(s):  
Sherin M. Moussa ◽  
Gul A. Agha
2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668484 ◽  
Author(s):  
Huthiafa Q Qadori ◽  
Zuriati A Zulkarnain ◽  
Zurina Mohd Hanapi ◽  
Shamala Subramaniam

Recently, wireless sensor networks have employed the concept of mobile agent to reduce energy consumption and obtain effective data gathering. Typically, in data gathering based on mobile agent, it is an important and essential step to find out the optimal itinerary planning for the mobile agent. However, single-agent itinerary planning suffers from two primary disadvantages: task delay and large size of mobile agent as the scale of the network is expanded. Thus, using multi-agent itinerary planning overcomes the drawbacks of single-agent itinerary planning. Despite the advantages of multi-agent itinerary planning, finding the optimal number of distributed mobile agents, source nodes grouping, and optimal itinerary of each mobile agent for simultaneous data gathering are still regarded as critical issues in wireless sensor network. Therefore, in this article, the existing algorithms that have been identified in the literature to address the above issues are reviewed. The review shows that most of the algorithms used one parameter to find the optimal number of mobile agents in multi-agent itinerary planning without utilizing other parameters. More importantly, the review showed that theses algorithms did not take into account the security of the data gathered by the mobile agent. Accordingly, we indicated the limitations of each proposed algorithm and new directions are provided for future research.


2014 ◽  
Vol 02 (03) ◽  
pp. 243-248 ◽  
Author(s):  
Cheng Song ◽  
Gang Feng

This paper investigates the coverage problem for mobile sensor networks on a circle. The goal is to minimize the largest distance from any point on the circle to its nearest sensor while preserving the mobile sensors' order. The coverage problem is translated into a multi-agent consensus problem by showing that the largest distance from any point to its nearest sensor is minimized if the counterclockwise distance between each sensor and its right neighbor reaches a consensus. Distributed control laws are also developed to drive the mobile agents to the optimal configuration with order preservation. Simulation results illustrate the effectiveness of the proposed control laws.


Author(s):  
Yu-Cheng Chou ◽  
David Ko ◽  
Harry H. Cheng

Agent technology is emerging as an important concept for the development of distributed complex systems. A number of mobile agent systems have been developed in the last decade. However, most of them were developed to support only Java mobile agents. Furthermore, many of them are standalone platforms. In other words, they were not designed to be embedded in a user application to support the code mobility. In order to provide distributed applications with the code mobility, this article presents a mobile agent library, the Mobile-C library. The Mobile-C library is supported by various operating systems including Windows, Unix, and real-time operating systems. It has a small footprint to meet the stringent memory capacity for a variety of mechatronic and embedded systems. This library allows a Mobile-C agency, a mobile agent platform, to be embedded in a program to support C/C++ mobile agents. Functions in this library facilitate the development of a multi-agent system that can easily interface with a variety of hardware devices.


Sign in / Sign up

Export Citation Format

Share Document